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Preface

This document consists of lecture notes made for a course in Principles of
Analysis (SAU MATH 1023), taught in the fall of 2003. The textbook in use at the
time was [Ga98].
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CHAPTER 1

Lecture 1 - Sets

1. Sets

Set and element are undefined terms, except to the extent that we know the
relationship between them is containment; elements are contained in sets.

If two symbols a and b represent the same element, we write a = b. If the
symbols a and b represent different elements, we write a 6= b. If an element a is a
contained in a set A, this relation is written a ∈ A. If a is not in A, this fact is
denoted a /∈ A. We assume that the statements a ∈ A and a = b are always either
true or false, although we may not know which.

Two sets are considered equal when they contain the same elements:

A = B ⇔ [x ∈ A ⇔ x ∈ B].

2. Subsets

Let A and B be sets. We say that B is a subset of A and write A ⊂ B if
x ∈ B ⇒ x ∈ A.

It is clear that A = B if and only if A ⊂ B and B ⊂ A.
A set with no elements is called an empty set. Since two sets are equal if and

only if they contain the same elements, there is only one empty set, and it is denoted
∅. The empty set is a subset of any other set.

If X is any set and p(x) is a proposition whose truth or falsehood depends on
each element x ∈ X, we may construct a new set consisting of all of the elements
of X for which the proposition is true; this set is denoted:

{x ∈ X | p(x)}.
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2 1. LECTURE 1 - SETS

3. Set Operations

Let X be a set and let A,B ⊂ X.
The intersection of A and B is denoted by A ∩ B and is defined to be the set

containing all of the elements of X that are in both A and B:

A ∩B = {x ∈ X | x ∈ A and x ∈ B}.
The union of A and B is denoted by A∪B and is defined to be the set containing

all of the elements of X that are in either A or B:

A ∪B = {x ∈ X | x ∈ A or x ∈ B}.
We note here that there is no concept of “multiplicity” of an element in a set; that
is, if x is in both A and B, then x occurs only once in A ∪B.

The complement of A with respect to B is denoted A r B and is defined to be
the set containing all of the elements of A which are not in B:

A r B = {x ∈ X | x ∈ A and x /∈ B}.
The symmetric difference of A and B is denoted A4B and is defined to be the

set containing all of the elements X which are in either A or B both not both:

A4B = {x ∈ X | x ∈ A ∪B and x /∈ A ∩B}.

Proposition 1.1. Let X be a set and let A,B, C ⊂ X. Then
• A = A ∪A = A ∩A;
• ∅ ∩A = ∅;
• ∅ ∪A = A;
• A ⊂ B ⇔ A ∩B = A;
• A ⊂ B ⇔ A ∪B = B;
• A ∩B = B ∩A;
• A ∪B = B ∪A;
• (A ∩B) ∩ C = A ∩ (B ∩ C);
• (A ∪B) ∪ C = A ∪ (B ∪ C);
• (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C);
• (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C);
• A r (B ∪ C) = (A r B) ∩ (A r C);
• A r (B ∩ C) = (A r B) ∪ (A r C);
• A ⊂ B ⇒ A ∪ (B r A) = B;
• A ⊂ B ⇒ A ∩ (B r A) = ∅;
• A r (B r C) = (A r B) ∪ (A ∩B ∩ C);
• (A r B) r C = A r (B ∪ C);
• A4B = (A ∪B) r (A ∩B);
• A4B = (A r B) ∪ (B r A).
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4. Cartesian Product of Two Sets

If a and b are elements, we can construct a new element

(a, b) = {{a}, {a, b}},
called an ordered pair. Ordered pairs obey the “defining property”:

(a, b) = (c, d) ⇔ a = c and b = d.

If (a, b) is an ordered pair, then a is called the first coordinate and b is called the
second coordinate.

Let A and B be sets. The cartesian product of A and B is denoted A×B and
is defined to be the set of ordered pairs whose first coordinate is in A and whose
second coordinate is in B:

A×B = {(a, b) | a ∈ A and b ∈ B}.

Proposition 1.2. Let X be a set and let A,B,C ⊂ X. Then
• (A ∪B)× C = (A× C) ∪ (B × C);
• (A ∩B)× C = (A× C) ∩ (B × C);
• A× (B ∪ C) = (A×B) ∪ (A× C);
• A× (B ∩ C) = (A×B) ∩ (A× C);
• (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D).
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5. Functions

Let A and B be sets. A function from A to B is a subset f ⊂ A×B such that

∀a ∈ A∃!b ∈ B 3 (a, b) ∈ f.

If f is such a subset of A×B, we indicate this fact by writing f : A → B. If a ∈ A,
the unique element of b such that (a, b) ∈ f is denoted f(a). Functions obey the
“defining property”:

• for every a ∈ A there exists b ∈ B such that f(a) = b;
• if f(a) = b and f(a) = c, then b = c.

Let f : A → B be a function. The domain of f is A, and the codomain of f is
B.

If C ⊂ A, the image of C is f(C) = {b ∈ B | f(c) = b for some c ∈ C}. The
range of a function is the image of its domain.

If D ⊂ B, the preimage of D is f−1(D) = {a ∈ A | f(a) ∈ D}.
We say that f is injective (or one to one) if for every a1, a2 ∈ A we have

f(a1) = f(a2) ⇒ a1 = a2.
We say that f is surjective (or onto) for every b ∈ B there exists a ∈ A such that

f(a) = b. A function is surjective if and only if its range is equal to its codomain.
We say that f is bijective if it is both injective and surjective.
If A is a set, define the identity function on A to be the function idA : A → A

given by idA(a) = a for all a ∈ A. This function is bijective.
If f : A → B and g : B → C, define the composition of f and g to be the

function g ◦ f : A → B given by g ◦ f(a) = g(f(a)).
We say that f is invertible if there exists a function f−1 : B → A, called the

inverse of f , such that f ◦ f−1 = idB and f−1 ◦ f = idA.

Proposition 1.3. A function is invertible if and only if it is bijective.

If f is injective, we define the inverse of f to be a function f−1 : f(A) → A by
f−1(y) = x, where f(x) = y. Since an invertible function is bijective, it is injective,
and this definition of inverse agrees with our previous one in this case.

If f : A → B is a function and C ⊂ A, we define a function f �C : C → B,
called the restriction of f to C, by f �C (c) = f(c). If f is injective, then so is f �C .
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6. Cardinality

We say that two sets have the same cardinality if and only if there is a bijective
function between them.

Let N = {0, 1, 2, . . . } be the set of natural numbers and for n ∈ N let Hn =
{m ∈ N | m < n}. A set X is called finite if there exists a surjective function from
X to Hn for some n ∈ N. If there exists a bijective function X → Hn, we say that
the cardinality of X is n, and write |X| = N .

A set X is called infinite if there exists an injective function N → X.

Proposition 1.4. A set is infinite if and only if it is not finite.

Proposition 1.5. Let A be a finite set and let f : A → A be a function. Then f
is injective if and only if f is surjective.

Proposition 1.6. Let A and B be finite sets. Then |A×B| = |A| · |B|.





CHAPTER 2

Lecture 2 - Collections and Relations

1. Collections

A collection is a set whose elements are themselves sets.
Let X be a set. The collection of all subsets of X is called the power set of X

and is denoted P(X).
Let C be a collection of subsets of X; then C ⊂ P(X). Define the intersection

and union of the collection by
• ∩C = {a ∈ A | a ∈ C for all C ∈ C}
• ∪C = {a ∈ A | a ∈ C for some C ∈ C}

If C contains two subsets of X, this definition concurs with our previous definition
for the union of two sets.

Let A and B sets. The collection of all functions from A to B is denoted
F(A,B), and is a subset of P(A×B).

2. Families

Let A and X be sets. A family of subsets of X indexed by A is the image of
an injective function Y : A → P(X). For each a ∈ A, the set Y (a) may be denoted
by Ya. The family itself may denoted by {Ya ⊂ X | a ∈ A}

Let {Ya ⊂ X | a ∈ A} be a family of subsets of a set X. The intersection and
union of the family is defined by

• ∩a∈AYa = {x ∈ X | x ∈ Ya for all a ∈ A};
• ∪a∈AYa = {x ∈ X | x ∈ Ya for some a ∈ A};

Let X be a set and let C ⊂ P(X) be a collection of subsets of X. Then C is
a family of subsets of X, indexed by itself via the identity function. Our defini-
tions of intersection and union of a family of subsets concur with our definitions of
intersections and union of a collection of subsets under this correspondence.

7
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3. Cartesian Product of a Family

Let X be a set and let C = {Ya ⊂ X | a ∈ A} be a family of subsets of X. Let
Y = ∪a∈AYa.

The cartesian product of C is denoted by ×C or by ×a∈AYa and is defined to
be the collection of all functions from A into the union of the family such that each
element of a is mapped to an element of Ya:

×a∈AYa = {f ∈ F(A, Y ) | f(a) ∈ Ya}.
We needed to define the cartesian product of two sets in order to define function,

which in turn we have used to define the cartesian product of more than two sets.
These definitions concur according to the following proposition.

Proposition 2.1. Let X be a set and let Y1, Y2 ⊂ X. Let A = {1, 2} and let
Y = Y1 ∪ Y2. For any x1, x2 ∈ X, define a function fx1,x2 : A → X by f(1) = x1

and f(2) = x2. Define a function

φ : Y1 × Y2 → {f ∈ F(A, Y ) | f(a) ∈ Ya} by φ(x1, x2) = fx1,x2 .

Then φ is a bijection.
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4. Relations

A relation on a set A is a subset of R ⊂ A× A. If (a, b) ∈ R, we may indicate
this by writing aRb; that is (a, b) ∈ R ⇔ aRb.

A relation is called reflexive if aRa for every a ∈ A.
A relation is called symmetric if aRb ⇔ bRa for every a, b ∈ A.
A relation is called antisymmetric if aRb and bRa implies a = b.
A relation is called transitive if aRb and bRc implies aRc.
A relation is called definite if either aRb or bRa for every a, b ∈ A.
A partial order on A is a relation which is reflexive, antisymmetric, and tran-

sitive. A total order on A is a definite partial order.
An equivalence relation on A is a relation which is reflexive, symmetric, and

transitive.
If ≡ is an equivalence relation on A and a ∈ A, the equivalence class of a is the

set
[a]≡ = {b ∈ A | a ≡ b}.

A set is nonempty if it is not equal to the empty set. Two sets A,B are called
disjoint if A ∩B = ∅. A collection C ⊂ P(A) of subsets of A is said to be pairwise
disjoint if every distinct pair of members of C are disjoint. A collection C ⊂ P(A)
of subsets of A is said to cover A if ∪C = A.

A partition of A is a collection C ⊂ P(A) of subsets of A such that
• ∅ /∈ C;
• ∪C = A;
• A,B ∈ C ⇒ A ∩B = ∅ or A = B.

That is, a partition of A is a pairwise disjoint collection of nonempty subsets of A
which covers A.

If ≡ is an equivalence relation A, then the collection of equivalence classes under
≡ is a partition of A. If C is a partition of A, we may define an equivalence relation
≡ on A by a ≡ b if and only if they are in the same subset of the partition.

If f : A → X is a surjective function, then the relation ≡ on A defined by
a ≡ b ⇔ f(a) = f(b) is an equivalence relation which partitions A into blocks
of elements which are sent to the same place by f . There is a natural bijective
function from the partition into X given by sending each block to the appropriate
element in X.





CHAPTER 3

Lecture 3 - Induction

1. Set Proof Example

The following properties are sometimes useful in proofs:
• A = A ∪A = A ∩A
• ∅ ∩A = ∅
• ∅ ∪A = A
• A ⊂ B ⇔ A ∩B = A
• A ⊂ B ⇔ A ∪B = B

As an example, we prove one of these properties.

Proposition 3.1. Let A and B be a sets. Then A ⊂ B ⇔ A ∩B = A.

Proof. To prove an if and only if statement, we prove implication in both directions.
(⇒) Assume that A ⊂ B. We wish to show that A∩B = A. To show that two

sets are equal, we show that each is contained in the other.
(⊂) To show that A∩B ⊂ A, it suffices to show that every element of A∩B is

in A. Thus we select an arbitrary element c ∈ A∩B and show that it is in A. Now
by definition of intersection, c ∈ A ∩ B means that c ∈ A and c ∈ B. Thus c ∈ A.
Since c was arbitrary, every element of A ∩B is contained in A. Thus A ∩B ⊂ A.

(⊃) Let a ∈ A. We wish to show that a ∈ A ∩ B. Since A ⊂ B, then every
element of A is an element of B. Thus a ∈ B. So a ∈ A and a ∈ B. By definition
of intersection, a ∈ A ∩B. Thus A ⊂ A ∩B.

Since A ∩B ⊂ A and A ⊂ A ∩B, we have A ∩B = A.
(⇐) Assume that A ∩ B = A. We wish to show that A ⊂ B. Let a ∈ A. It

suffices to show that a ∈ B. Since A ∩ B = A, then a ∈ A ∩ B. Thus a ∈ A and
a ∈ B. In particular, a ∈ B. �

Now let us prove the analogous statement in compressed form.

Proposition 3.2. Let A and B be a sets. Then A ⊂ B ⇔ A ∪B = B.

Proof.
(⇒) Assume that A ⊂ B. Clearly B ⊂ A ∪ B, so we show that A ∪ B ⊂ B.

Let c ∈ A ∪B. Then c ∈ A or c ∈ B. If c ∈ B we are done, so assume that c ∈ A.
Since A ⊂ B, then c ∈ B by definition of subset. Thus A ∪B ⊂ B.

(⇐) Assume that A ∪B = B and let a ∈ A. Thus a ∈ A ∪B, so a ∈ B. Thus
A ⊂ B. �

2. Natural Numbers

Define the natural numbers.
• 0 = ∅;

11



12 3. LECTURE 3 - INDUCTION

• 1 = {∅};
• 2 = {∅, {∅}};
• 3 = {∅, {∅}, {∅, {∅}}};

and so forth. We could have written this as
• 0 = ∅;
• 1 = {0};
• 2 = {0, 1};
• 3 = {0, 1, 2};

and so forth. A given natural number is the set containing all of the previous
natural numbers. Restate as follows.

We define 0 to be the empty set. If x is a set, the successor of x is denoted x+

and is defined as
x+ = x ∪ {x}.

The natural numbers are the set N defined by following properties:
(1) 0 ∈ N;
(2) if n ∈ N, then n+ ∈ N;
(3) if S ⊂ N, 0 ∈ S, and n ∈ S ⇒ n+ ∈ S, then S = N.

For m,n ∈ N, we say the m is less than or equal to n if m ⊂ n:

m ≤ n ⇔ m ⊂ n.
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3. Induction

Note that the third property of natural numbers asserts that only successors of
0 are in N; that is, this property asserts that N is a minimal set of successors of 0,
and that N is the unique set satisfying (1) through (3). This property is known as
the Principal of Mathematical Induction.

Suppose that for every natural number n, we have a proposition p(n) which is
either true or false. Let

S = {n ∈ N | p(n) is true}.
Now if p(0) is true, and if the truth of p(n) implies the truth of p(n+), then the
set S contains 0 and it contains the successor of every element in it. Thus, in this
case, S = N, which means that p(n) is true for all n ∈ N. We state this as

Theorem 3.3. Induction Theorem
Let p(n) be a proposition for each n ∈ N. If

(1) p(0) is true;
(2) If p(n) is true, then p(n+) is true;

then p(n) is true for all n ∈ N.

Example 3.4. Show that
∑n

i=1 = (n−1)n
2 for all n ∈ N.

Example 3.5. Show that 7 | (11n − 4n) for all n ∈ N.

Proof. For n = 1, we have 7 = 11 − 4, so clearly 7 | 111 − 41. Thus assume that
7 | 11n−1 − 4n−1, so there exists x ∈ Z such that 7x = (11n−1 − 4n−1). Now

11n − 4n = 11n − 11 · 4n−1 + 11 · 4n−1 − 4 · 4n−1

= (11n−1 − 4n−1)11 + (11− 4)4n−1

= 7x · 11 + 7 · 4n−1

= 7(11x + 4n−1.

Thus 7 | (11n − 4n). �

Now the induction theorem can be made stronger by weakening the hypothesis.
The resulting theorem gives a proof technique which is known as strong induction.

Theorem 3.6. Strong Induction Theorem
Let p(n) be a proposition for each n ∈ N. If

(1) p(0) is true;
(2) If p(m) is true for all m ≤ n, then p(n + 1) is true;

then p(n) is true for all n ∈ N.

Proof. Let t(n) be the statement that “p(m) is true for all m ≤ n”.
Our first assumption is that p(0) is true, and since the only natural number

less than or equal to 0 is zero (because the only subset of the empty set is itself),
this means that t(0) is true.

Our second assumption is that if t(n) is true, then p(n+1) is true. Thus assume
that t(n) is true so that p(n + 1) is also true. Then p(i) is true for all i ≤ n + 1.
Thus t(n + 1) is true.

By our original Induction Theorem, we conclude that t(n) is true for all n ∈ N.
This implies that p(n) is true for all n ∈ N. �
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4. Recursion

We now state the Recursion Theorem, which will allows us to define addition
and multiplication of natural numbers.

Theorem 3.7. Recursion Theorem
Let X be a set, f : X → X, and a ∈ X. Then there exists a unique function
φ : N → X such that φ(0) = a and φ(n+) = f(φ(n)) for all n ∈ N.

Reason. May be proved by induction. �

Let f : N → N be given by f(n) = n+. Let σm : N → N be the unique function,
whose existence is guaranteed by the Recursion Theorem, defined by σm(0) = m
and σm(n+) = f(σm(n)) = (σm(n))+. Then σm(n) is defined to be the sum of m
and n:

m + n = σm(n).
Let f : N → N be given by f = σm. Let µm : N → N be the unique function,

whose existence is guaranteed by the Recursion Theorem, defined by µm(0) = 0
and µm(n+) = f(µm(n)) = σm(µm(n)) = m + µm(n). Then µm(n) is defined to be
the product of m and n:

mn = µm(n).
The following properties of natural numbers can be proved using the above

definitions:
• m + n = n + m (commutativity of addition);
• (m + n) + o = m + (n + o) (associativity of addition);
• mn = nm (commutativity of multiplication);
• (mn)o = m(no) (associativity of multiplication);
• m(n + o) = mn + mo (distributivity of multiplication over addition);
• m + 0 = m (0 is an additive identity);
• 1m = m (1 is a multiplicative identity);
• 0m = 0.

We state two additional properties, which we will use to show that multiplica-
tion of integers is well-defined.

Proposition 3.8. Cancellation Law of Addition
Let a, b, c ∈ N and suppose that a + c = b + c. Then a = b.

Proposition 3.9. Cancellation Law of Multiplication
Let a, b, c ∈ N and suppose that ac = bc. Then a = b.
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5. Integers

Develop the integers from the natural numbers as follows.
Let A = N×N. We wish to think of the elements (a, b) of A as differences a−b.
Define a relation ∼ on A by

(a, b) ∼ (c, d) ⇔ a + d = b + c.

Prove that this is an equivalence relation. Let [a, b] denote the equivalence class of
(a, b).

Set Z = {[a, b] | a, b ∈ N}.
Define addition and multiplication on Z as follows:
• [a, b] + [c, d] = [a + c, b + d];
• [a, b] · [c, d] = [ac + bd, ad + bc].

Prove that these binary operations are well-defined and satisfy the desired proper-
ties of the integers. The additive identity is [0, 0] and the additive inverse of [a, b]
is [b, a]. The multiplicative identity is [1, 0].

Define a relation ≤ on Z by

[a, b] ≤ [c, d] ⇔ a + d ≤ b + c.

Prove that this is a linear order relation on Z, and that it relates to addition and
multiplication in the desired way.
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6. Rationals

Develop the rationals from the integers as follows.
Let A = Z× Z r {0}. We wish to think of the elements (a, b) of A as fractions

a
b .

Define a relation ∼ on A by

(a, b) ∼ (c, d) ⇔ ad = bc.

Prove that this is an equivalence relation. Let [a, b] denote the equivalence class of
(a, b).

Set Q = {[a, b] | a, b ∈ Z with b 6= 0}.
Define addition and multiplication on Q as follows:
• [a, b] + [c, d] = [ad + bc, bd];
• [a, b] · [c, d] = [ac, bd].

Prove that these binary operations are well-defined and satisfy the desired proper-
ties of the integers. The additive identity is [0, 1] and the additive inverse of [a, b]
is [−a, b]. The multiplicative identity/is [1, 1] and the multiplicative inverse of [a, b]
is [b, a]. Denote [0, 1] by 0 and [1, 1] by 1. For x = [a, b], denote [−a, b] by −x and
[b, a] by x−1.

Define a relation ≤ on Q by

[a, b] ≤ [c, d] ⇔ (ad− bc)bd ≤ 0.

Prove that this is a linear order relation on Q, and that it relates to addition and
multiplication in the desired way.

The set Q satisfies the following properties:
(F1) (x + y) + z = x + (y + z);
(F2) x + 0 = x;
(F3) x + (−x) = 0;
(F4) xy = yx;
(F5) (xy)z = x(yz);
(F6) x · 1 = x;
(F7) x · x−1 = 1;
(F8) xy = yx;
(F9) x(y + z) = xy + xz;
(O1) x ≤ x;
(O2) x ≤ y and y ≤ x implies x = y;
(O3) x ≤ y and y ≤ z implies x ≤ z;
(O4) x ≤ y or y ≤ x.

Properties (F1) through (F2) say that Q is a field, and properties (O1) through
(O4) say that Q is a linearly ordered set.



CHAPTER 4

Lecture 4 - Dedekind Cuts

1. Example of Strong Induction

Let x ∈ Z, x ≥ 2. We say that x is prime if whenever x = ab for some positive
integers a and b, then either a = 1 or b = 1.

Problem 4.1. Let x ∈ Z be a positive integer, x ≥ 2. Then x is the product of
prime integers.

Proof. Proceed by induction on x, and select x = 2 as the base case. Clearly 2 is
prime, and so it is the product of primes.

Now assume that every integer between 2 and x − 1 is a product of prime
integers. If x is itself prime, we are done, so assume that x is not prime. Then
there exist a, b ∈ Z such that x = ab with a 6= 1 and b 6= 1. Then a < x and b < x,
so a is the product of primes and b is the product of primes. Therefore x is the
product of primes. �

2. Jargon

Maximal and minimal (extremal) versus maximum and minimum (extremum).
Supremal and infimal versus supremum and infimum.

17
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3. Linearly Ordered Sets

A linearly ordered set (A,≤) is a set A together with a relation ≤ on A satisfying
(O1) a ≤ a;
(O2) a ≤ b and b ≤ a implies a = b;
(O3) a ≤ b and b ≤ c implies a ≤ c;
(O4) a ≤ b or b ≤ a;

for every a, b, c ∈ A. We call ≤ a linear order relation on A.
Let A and B be linearly ordered sets. A morphism from A to B is a function

f : A → B such that
a1 ≤ a2 ⇒ f(a1) ≤ f(a2).

Let A be a linearly ordered set. If B ⊂ A, the B naturally inherits the linear
order, and becomes a linearly ordered set in its own right.

Let b ∈ B. We say that b is an minimal element of B if b ≤ c for every c ∈ B.
Similarly, we say that b is a maximal element of B if c ≤ b for every c ∈ B.

We say that A is dense if for every a1, a2 ∈ A with a1 < a2, there exists a ∈ A
such that a1 < a < a2.

Consider a partition {C,U} of A into two blocks such that c ≤ u for every
c ∈ C and u ∈ U . There are four possibilities:

(a) C has a maximal element and U has a minimal element;
(b) C has a maximal element and U does not have a minimal element;
(c) C does not have a maximal element and U has a minimal element;
(d) C does not have a maximal element and U does not have a minimal

element.
In cases (a), (c), and (d), we say that C is a cut.
In case (a), we say that C is a jump.
In case (c), we say that C is a hit.
In case (d), we say that C is a gap.

Observation 1. Let A be a linearly ordered set. Then A is dense if and only if A
has no jumps.

Observation 2. The rational numbers Q is dense.

Proof. The average of two distinct rational numbers is rational and is between
them. �
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4. Dedekind Cuts

A Dedekind cut is a cut in the rational number line; that is, it is a proper
nonempty subset C ⊂ Q such that

(C1) c ∈ C and u ∈ Q r C implies c < u;
(C2) C has does not contain a maximal element.
The set of all Dedekind cuts is naturally ordered by inclusion. Moreover, this

is a total order

5. Addition of Cuts

Let C1 and C2 be Dedekind cuts. Define their sum as

C1 + C2 = {x ∈ Q | x = c1 + c2 for some c1 ∈ C1 and c2 ∈ C2}.

Proposition 4.1. Let C1, C2 ⊂ Q be cuts. Then C1 + C2 is a cut.

Proof. Set C = C1 + C2 and U = Q r C. Clearly C ⊂ Q is nonempty; we wish to
prove properties (C1) and (C2).

Let c ∈ C and u ∈ U . Then c = c1 + c2 for some c1 ∈ C1 and c2 ∈ C2. Suppose
that u ≤ c; then u− c2 ≤ c1, which implies that u− c2 ∈ C1. Set u− c2 = a ∈ C1;
then u = a + c2 ∈ C1 + C2 = C, a contradiction. Thus c < u.

Since C1 and C2 are cuts, c1 and c2 are not maximal elements in C1 and C2,
respectively. Thus there exists a1 ∈ C1 and a2 ∈ C2 such that c1 < a1 and c2 < a2.
Then a1 + a2 ∈ C, and c < a1 + a2; thus c is not maximal in C. �

Let M = {x ∈ Q | x < 0}. Clearly M is a Dedekind cut.
Let C be a Dedekind cut, and set

−C = {x ∈ Q | x = −y for some nonminimal y ∈ Q r C}.

Proposition 4.2. Let C,C1, C2, C3 ⊂ Q be cuts. Then −C is a Dedekind cut, and
(F1) (C1 + C2) + C3 = C1 + (C2 + C3);
(F2) C + M = C;
(F3) C + (−C) = M ;
(F4) C1 + C2 = C2 + C1.

Proof. Exercise.
�

Define subtraction of Dedekind cuts in the usual way.
Let C be a Dedekind cut, and say that C is positive if M is a proper subset of

C, and that C is negative if C is a proper subset of M .
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6. Multiplication of Cuts

Let C1 and C2 be Dedekind cuts. Set

C1 ∗ C2 = {x ∈ Q | x = c1c2 for some c1 ∈ C1 r M and c2 ∈ C2 r M} ∪M.

Now define their product by

C1 · C2 =



C1 ∗ C2 if C1 and C2 are positive;
−((−C1) ∗ C2) if C1 is negative and C2 is positive;
−(C1 ∗ (−C2)) if C1 is positive and C2 is negative;
(−C1) ∗ (−C2) if C1 and C2 are negative;
M if C1 = M for C2 = M.

Proposition 4.3. Let C1, C2 ⊂ Q be cuts. Then C1 · C2 is a cut.

Proof. Again set C = C1 + C2 and U = Q r C, and prove properties (C1) and
(C2). We assume that C1 and C2 are positive; the other cases require only minor
adjustments.

Let c ∈ C so that c = c1c2 for some c1 ∈ C1 r M and c2 ∈ C2 r M ; the other
cases are easy.

Let u ∈ U ; by definition, M ⊂ C so 0 ≤ u. Suppose that u ≤ c; then u/c2 ≤ c1,
which implies that u/c2 ∈ C1. Set u/c2 = a ∈ C1; then u = ac2 ∈ C1 · C2 = C, a
contradiction. Thus c < u.

Since C1 and C2 are cuts, c1 and c2 are not maximal elements in C1 and C2,
respectively. Thus there exists a1 ∈ C1 and a2 ∈ C2 such that c1 < a1 and c2 < a2.
Then a1a2 ∈ C, and c < a1a2; thus c is not maximal in C. �

Let I = {x ∈ Q | x < 1}. Clearly I is a Dedekind cut.
Let C be a Dedekind cut different from M , and set

C−1 = {x ∈ Q | x = y−1 for some y ∈ C}.

Proposition 4.4. Let C,C1, C2, C3 ⊂ Q be cuts. Then C−1 is a Dedekind cut,
and

(F5) (C1 · C2) · C3 = C1 · (C2 · C3);
(F6) C · I = C;
(F7) C · (C−1) = I;
(F8) C1 · C2 = C2 · C1;
(F9) C1 · (C2 + C3) = (C1 · C2) + (C1 · C3).

Proof. Exercise. �
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7. Ordering of Cuts

Let C = {C ⊂ Q | C is a cut}. Define a relation ≤ on C by

C1 ≤ C2 ⇔ C1 ⊂ C2.

Proposition 4.5. Let C,C1, C2, C3 ∈ C. Then
(O1) C ≤ C;
(O2) C1 ≤ C2 and C2 ≤ C1 implies C1 = C2;
(O3) C1 ≤ C2 and C2 ≤ C3 implies C1 ≤ C3;
(O4) C1 ≤ C2 or C2 ≤ C1.

Moreover,
(O5) C1 ≤ C2 implies C1 + C3 ≤ C2 + C3;
(O6) C1 ≤ C2 implies C1 · C3 ≤ C2 ≤ C3 whenever M ≤ C3.

Proof. Exercise. �





CHAPTER 5

Lecture 5 - Suprema and Infima

1. The Real Numbers

Define the real numbers to be the set of all Dedekind cuts, and denote this set
by R. This is an ordered field.

For every a ∈ Q, let Ca = {x ∈ Q | x < a}. This is clearly a Dedekind cut; we
call this the rational cut corresponding to a. Note that a cut is rational if and only
if it is a hit.

Define a function
φ : Q → R by φ(a) = Ca.

This function satisfies the following properties:
(H1) φ(1) = I (where I is the multiplicative identity in R);
(H2) φ(a + b) = φ(a) + φ(b);
(H3) φ(ab) = φ(a)φ(b).

These properties say that φ is a field homomorphism. The image φ(Q) is a subfield
of R which is isomorphic to Q as an ordered field. Thus we may identify the rational
numbers with the set of rational cuts, and we no longer make a distinction between
them. We now view Q as a subset of R.

Next we note that this process has produced real numbers which did not exist
in Q; that is, the function φ is not surjective. To see this, we use the following
exercise:

Problem 5.1. Let a, b ∈ Q with 0 < a < b. Then there exists q ∈ Q such that
a < q2 < b.

From the rational roots theorem, we know that there is no rational number
whose square is 2. However, there is a real number with this property.

Example 5.1. Set C = {x ∈ Q | x2 < 2}. Then C · C = {x ∈ Q | x < 2} = C2.

Proof. First note that 1 ∈ C, implying that C is a positive cut. Recall that

C · C = {x ∈ Q | x = ab with a, b ∈ C r M} ∪M.

Let x ∈ C · C. If x ≤ 0, then x ∈ C2, so assume that x > 0. Then x = ab
for some a, b ∈ C r M . Without loss of generality, assume that b > a. Then
x = ab ≤ b2 < 2, so x ∈ C2.

Let x ∈ C2, so that x < 2. By the previous problem, there exists q ∈ Q such
that x < q2 < 2. Thus q ∈ C so q2 ∈ C · C; since C · C is a cut and x < q2, we
must have x ∈ C · C. �

Every Dedekind cut is either a hit or a gap. The image of φ is exactly the set
of hits in the rational number line, and the irrational numbers is exactly the set of
gaps.

23
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Finally, we ask if it is possible to produce even more numbers if we repeat this
process; that is, does the set of real numbers have any gaps? We demonstrate this
it does not, and explore the consequences of this property.

First we need to recall a basic property of sets.

Proposition 5.2 (DeMorgan’s Laws for Sets). Let W be a set. Let S be a subset
of W and let C be a collection of subsets of W . Then

(a) S r ∪C∈CC = ∩C∈C(S r C);
(b) S r ∩C∈CC = ∪C∈C(S r C).

Theorem 5.3 (Cantor-Dedekind Theorem). The set of real numbers has no gaps.

Proof. Let C be a cut in R. Let A = ∪C∈CC. Set U = Q r A. By DeMorgan’s
Law, U = ∩C∈CC.

Claim 1: A is a cut.
Let a ∈ A and u ∈ U ; we wish to show that a < c. Then u ∈ Q r C, for every

C ∈ C. But a ∈ C for some C ∈ C, and u is not in C; since C is a cut, a < u.
Let a ∈ A; we wish to show that a is not maximal in A. Now a ∈ C for some

C ∈ C, and since C is a cut, a is not maximal in C, so there exists c ∈ C such that
a < c. But C ⊂ A, so c ∈ A and a is not maximal in A.

Claim 2: A ∈ R r C

If A were in C, it would be the largest element in C, because the ordering is
inclusion and A contains every set in C. In this case C would not be a cut.

Claim 3: A is minimal in R r C

Let X be a cut, and suppose that X < A; we wish to show that X is in C.
Now X < A means that X is strictly contained in A, so there exists y ∈ A such
that y /∈ X. However, since y ∈ A, we know that y ∈ Y for some Y ∈ C, and we
have X < Y < A. Since C is a cut, X ∈ C.

This completes the proof that C is not a gap. �
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2. Suprema and Infima

Let A be a linearly ordered set, and let B ⊂ A.
An upper bound for B is an element a ∈ A such that b ≤ a for every b ∈ B. If

B has an upper bound, we say that B is bounded above.
A lower bound for B is an element a ∈ A such that a ≤ b for every b ∈ B. If B

has a lower bound, we say that B is bounded below.
We say that B is bounded if it is both bounded above and bounded below.
A supremum of B is an element a ∈ A such that
(a) b ≤ a for every b ∈ B;
(b) b ≤ c for every b ∈ B implies b ≤ c.

In this case, write a = sup(B).
An infimum of B is an element a ∈ A such that
(a) b ≥ a for every b ∈ B;
(b) b ≥ c for every b ∈ B implies b ≥ c.

In this case write a = inf(B).
Suprema and infima are unique, if they exist. For this reason, they are some-

times referred to as least upper bound (lub) and greatest lower bound (glb), respec-
tively.

Observation 3. Let A be a linearly ordered set. The following are equivalent con-
ditions on A:

(a) every nonempty subset of A that is bounded above has an lub;
(b) every nonempty subset of A that is bounded below has a glb;
(c) A has no gaps.

A linearly ordered set satisfying any one of these equivalent conditions is called
complete.

Proposition 5.4. The real numbers are a complete ordered field.

Henceforth, we prove all that we need using this characterization of the real
numbers.
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3. Density of Q and I in R

Let R be the set of real numbers. View the Q denote the set of rationals cuts,
which we now refer to as rational numbers. Set I = RrQ; this is the set of irrational
numbers.

Proposition 5.5 (Archimedean Property). Let a, b ∈ R with a > 0 and b > 0.
Then there exists n ∈ N such that b ≤ na.

Proof. Suppose that the Archimedean property fails. Then there exists a, b ∈ R
with a > 0 and b > 0 such that na < b for every n ∈ N. Set A = {na | n ∈ N}.
Now A is bounded above by b, so by the completeness property of R, there exists
s ∈ R such that s = sup(A). Since a > 0 we have s < s + a, so s− a < s. Since s
is a least upper bound for A, s− a is not an upper bound for A; thus there exists
na ∈ A such that s−a < na. This implies that s < (n+1)a ∈ A, which contradicts
that s = sup(A). �

Proposition 5.6 (Density of Q). Let a, b ∈ R with a < b. Then there exists q ∈ Q
such that a < q < b.

Proof. Set c = b − a, and note that c > 0. By the Archimedean property, there
exists n ∈ N such that 1 ≤ nc, which shows that 1 ≤ nb− na, or na + 1 ≤ nb.

Let m = min{x ∈ N | na < x}; this m exists by the Well-Ordering Principle of
the natural numbers. Now m ≤ na+1, for otherwise na+1 < m and na < m−1 <
m, contradicting the minimality of m. Therefore na < m < na + 1 < nb. Divide
by n to achieve a < m

n < b. With q = m
n , the proof is complete. �

Proposition 5.7 (Density of I). Let a, b ∈ R with a < b. Then there exists x ∈ I
such that a < x < b.

Proof. First observe that if q ∈ Q and x ∈ I, then q + x ∈ I.
Let q ∈ Q be a rational number such that a−x < q < b−x. Then a < q+x < b,

with q + x ∈ I. �



CHAPTER 6

Lecture 6 - Cardinality

1. Motivation

We have seen that there are infinitely many rational numbers, and infinitely
many irrational numbers. So the question arises as to whether or not there are
as many rational numbers as there are real numbers: there are infinitely many of
both. We know that the rational numbers embed into the real numbers, but does
there exist an injective function in the other direction?

We begin by demonstrating that there is more than one type of infinite set in
this regard.

Proposition 6.1. Let X be a set. Then there does not exist a surjective function
X → P(X).

Proof. Let f : X → P(X); we wish to show that f is not surjective. Set

Y = {x ∈ X | x /∈ f(x)}.
Suppose, by way of contradiction, that f(x) = Y for some x ∈ X. Is x ∈ Y ? If
it is, then x ∈ f(x), so by definition of Y , x /∈ Y . On the other hand, if it is not,
then x /∈ f(x), so x ∈ Y . Either case is an immediate contradiction. Thus there is
no such x satisfying f(x) = Y , and Y is not in the image of f . Therefore f is not
surjective. �
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2. Cardinal Numbers

Let U be a set; we refer to U as a universal set, and assume that U contains R.
Let A and B be sets. We say that A and B have the same cardinality if there

exists a bijective function between them. If A and B have the same cardinality, we
write A ∼ B. Then ∼ is a relation on P(U).

Proposition 6.2. The relation ∼ is an equivalence relation on P(U).

We shall call the equivalence classes of the relation the cardinal numbers in U .
Let i denote the set of cardinal numbers in U . If A ⊂ U , the equivalence class to
which it belongs is denoted |A|, and is called the cardinality of A.

Define a relation ≤ on i by

|A| ≤ |B| ⇔ ∃ injective f : A → B;

where A,B ⊂ U are representatives of the cardinal numbers |A| and |B| respectively.

Proposition 6.3. The relation ≤ on i is well defined.

That is, let A1, A2, B1, B2 ⊂ U such that A1 ∼ A2 and B1 ∼ B2, and such that
|A1| ≤ |B1|. Show that |A2| ≤ |B2|.
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3. Schroeder-Bernstein Theorem

Lemma 6.4 (Banach’s Lemma). Let X and Y be sets. and let f : X → Y and
g : Y → X be injective functions. There exist subsets A ⊂ X and B ⊂ Y such that
f(A) = B and g(Y r B) = X r A.

Proof. Fix the following objects:
• Let X and Y be sets.
• Let f : X → Y and g : Y → X be injective functions.
• Let h = g ◦ f .
• Let C0 = X r g(Y ).
• Let Cn = h(Cn−1), for each n ∈ N.
• Let A = ∪∞n=0Cn.
• Let B = f(A).

It suffices to show that g(Y r B) = X r A.
Claim 1: h(A) ⊂ A.

Let a0 ∈ h(A). Then a0 = h(a1) for some a1 ∈ A. By definition of A, a1 ∈ Cn for
some n ∈ N. Then a0 ∈ Cn+1. Thus a0 ∈ A.

Claim 2: g(Y r B) ⊂ X r A.
We want to select an arbitrary y0 ∈ Y r B and show that g sends it into X r A.
Let x0 ∈ g(Y r B). Then there exists y0 ∈ Y r B such that g(y0) = x0. Suppose
by way of contradiction that x0 ∈ A. Since x0 ∈ g(Y ), x0 /∈ C0, so x0 ∈ Cn for
some n > 0. Since Cn = h(Cn−1), there exists x1 ∈ Cn−1 such that h(x1) = x0.
So g(f(x1)) = x0. Since g is injective, f(x1) = y0. But x1 ∈ A, so y0 ∈ B. This
is a contradiction. Thus x0 /∈ A, so x0 ∈ X r A. Since x0 was chosen arbitrarily,
g(Y r B) ⊂ X r A.

Claim 3: g(Y r B) ⊃ X r A.
We want to select an arbitrary x0 ∈ X r A and find y0 ∈ Y r B which g sends to
it. Let x0 ∈ X r A. Since C0 ⊂ A, then x0 ∈ X r C0. That is, x0 ∈ g(Y ), so there
exists y0 ∈ Y such that g(y0) = x0. Suppose by way of contradiction that y0 ∈ B.
Then there exists x1 ∈ A such that f(x1) = y0. Thus h(x1) = x0, so x0 ∈ h(A).
Since h(A) ⊂ A, x0 ∈ A, which is a contradiction. Thus y0 /∈ B, so x0 ∈ g(Y r B).
Since x0 was chosen arbitrarily, X r A ⊂ g(Y r B). �

Theorem 6.5 (The Schroeder-Bernstein Theorem). Let X and Y be sets. If there
exist injective functions f : X → Y and g : Y → X, then there exists a bijective
function h : X → Y .

Proof. Let A and B be sets as specified by the lemma. Let V = X r A and
W = Y r B. Then f �A: A → B is bijective, and g �W : W → V is bijective. Let
r = (g �W )−1. Then r : V → W is bijective. Thus define h : X → Y by

h(x) =

{
f(x) if x ∈ A;
r(x) if x ∈ V.

�
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4. Axiom of Choice

Assume the following version of a famous axiom from set theory.

Axiom 6.6. Axiom of Choice
Let A and B be sets.

(a) There exists either a surjective function A → B or a surjective function
B → A.

(b) There exists an injective function f : A → B if and only if there exists a
surjective function g : B → A.

Corollary 6.7. Let X and Y be sets. If there exist surjective functions f : X → Y
and g : Y → X, then there exists an bijective function h : X → Y .

Proof. This follows immediately by combining the Schroeder-Bernstein Theorem
with the Axiom of Choice. �

Corollary 6.8. Let X and Y be sets. The following conditions are equivalent:
• |X| = |Y |;
• ∃ a bijective function X → Y ;
• ∃ injective functions X → Y and Y → X;
• ∃ surjective functions X → Y and Y → X.

Proposition 6.9. Show that (i,≤) is an ordered set.

Proof. To show this, one must show that ≤ is a total order relation on P(U).
The proof of symmetry uses the Schroeder Bernstein Theorem, and the proof of
definiteness requires the Axiom of Choice. �

The total order relation ≤ on i naturally leads to the following definitions for
derived relations on i:

• |A| ≥ |B| ⇔ |B| ≤ |A|;
• |A| < |B| ⇔ ¬(|A| ≥ |B|);
• |A| > |B| ⇔ ¬(|A| ≤ |B|).



CHAPTER 7

Lecture 7 - Countability and Uncountability

1. Countability

Let n ∈ N and set Nn = {0, 1, . . . , n−1}. By convention, we write that |Nn| = n.
Let A be a set. We say that A is finite if |A| = n for some n ∈ N, that is, if

there exists a bijective function A → Nn. We say that A is infinite if it is not finite.
We say that A is countable if |A| ≤ |N|, that is, if there exists an injective

function A → N, or equivalently, if there exists a surjective function N → A. We
say that A is countably infinite if it is both countable and infinite. A set is called
uncountable if it is not countable.

Proposition 7.1. Every infinite set has a countable subset.

Proof. Let A be an infinite set. Suppose, by way of contradiction, that there does
not exist an injective function from N to A.

For every f : N → A, define Ff = {n ∈ N | f(n) = f(m) for some m < n}.
Since f is not injective, Ff is nonempty. Set nf = min(Ff ).

Define the set M ⊂ N by

M = {n ∈ N | ∃f : N → A such that n = nf .}
Let m = max(M); then there exists g : N → A such that m = ng. Thus the
function g �Nm

: Nm → A is injective. Since A is infinite, g �Nm
is not surjective, so

there exists a ∈ A such that g(n) 6= a for every n ∈ Nm. Define a function

h : N → A by h(n) =

{
g(n) if n < m;
a if n ≥ m.

Now nh = m + 1, so m + 1 ∈ M , contradicting m = max(M). �

The Hebrew aleph is written ℵ. Cantor define ℵ0 to be the cardinality of the
natural numbers: ℵ0 = |N|. As a corollary of the previous proposition, ℵ0 is the
smallest of the “transfinite” cardinals.

Corollary 7.2. Let A be an infinite set. Then |N| ≤ |A|.

Proof. Let B be a countable subset of A. Then the inclusion function

inc : B → A given by inc(b) = b

is injective, so |N| = |B| ≤ |A|. �
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Proposition 7.3. Every subset of a countable set is countable.

Proof. Let A be a countable set and let B ⊂ A. Since A is countable, there exists
an injective function f : A → N. Then f �B : B → N is also injective, so B is
countable. �

Proposition 7.4. Let A and B be countable sets. Then A ∪B is countable.

Proof. Since A and B are countable, there exist surjective functions g : N → A and
h : N → B. Define a function

f : N → A ∪B by f(n) =

{
g(n

2 ) if n is even;
h(n−1

2 ) if n is odd.

Then f is surjective, so A ∪B is countable. �

Proposition 7.5. Let A and B be countable sets. Then A×B is countable.

Proof. Since A and B are countable, there exist injective functions g : A → N and
h : B → N. Define a function

f : A×B → N by f(a, b) = 2g(a) · 3h(b).

To see that f is injective, suppose that f(a1, b1) = f(a2, b2). Then 2g(a1)3h(b1) =
2g(a2)3h(b2). Thus 2g(a1)−g(a2) = 3h(b2)−h(b1), where without loss of generality
g(a1) ≥ g(a2). If g(a1) > g(a2), then 2 divides the left side and not the right;
this is impossible, so g(a1) = g(a2), and since g is injective, we must have a1 = a2.
Similarly, b1 = b2. �

Proposition 7.6. The set Z of integers is a countable set.

Proof. Define a function

f : Z → N by f(n) =


1 if n = 0;
2n if n > 0;
2n + 1 if n < 0.

Then f is injective, so Z is countable. �

Proposition 7.7. The set Q of rational numbers is a countable set.

Proof. Let Z+ denote the positive integers, Z+ = {1, 2, 3, . . . }. This is a subset of
Z, and is therefore countable. By Proposition 7.5, it suffices to find an injective
function Q → Z×Z+. Every rational number has a unique expression p

q as a ratio
of integers, where gcd(p, q) = 1 and q > 0. This induces a function Q → Z × Z+

given by p
q 7→ (p, q). This function is bijective; therefore Q is countable. �
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2. Cardinal Arithmetic

Let A and B be sets. We define the sum, product, and exponentiation of
cardinal numbers to match that of finite numbers.

Define
|A|+ |B| = |(A× {0}) ∪ (B × {1})|.

Note that even if A∩B is nonempty, A×{0} and B×{1} are disjoint sets. So if A is
any set with m elements and B is any set with n elements, then (A×{0})∪(B×{1})
is a set with m + n elements.

Define
|A| · |B| = |A×B|.

Again, if A and B are finite with m and n elements respectively, then A × B has
mn elements.

Define
|A||B| = |F(B,A)|,

where F(B,A) denotes the set of all functions from B to A. This again agrees with
the finite case.

We have seen that for any set X, there does not exist a surjective function from
X to its power set P(X). Thus |X| < |P(X)|. Actually, the next proposition shows
that |P(X)| = 2|X|.

Proposition 7.8. Let X be any set and let T = {0, 1}. Let P(X) denote the
power set of X and let F(X, T ) denote the set of all functions from X to T . Then
|P(X)| = |F(X, T )|.

Proof. Define a function

Φ : F(X, T ) → P(X) by Φ(f) = f−1(1).

It suffices to show that Φ is bijective.
To see that Φ is injective, suppose that Φ(f1) = Φ(f2), where f1 : X → T and

f2 : X → T . Then f1(x) = 1 if and only if f2(x) = 1. For x ∈ X, fi(x) is either
1 or 0, so if it is not 1, it is zero. Therefore f1(x) = 0 if and only if f2(x) = 0. So
f1(x) = f2(x) for every x ∈ X, that is, f1 = f2.

To see that Φ is surjective, let A ∈ P(X). Define a function

f : X → T by f(x) =

{
0 if x /∈ A;
1 if x ∈ A.

Then A = f−1(1), so Φ(f) = A. �
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3. Intervals

We define intervals of real numbers as follows:
(a) (a, b) = {x ∈ R | a < x < b};
(b) (a, b] = {x ∈ R | a < x ≤ b};
(c) [a, b) = {x ∈ R | a ≤ x < b};
(d) [a, b] = {x ∈ R | a ≤ x ≤ b};
(e) (a,∞) = {x ∈ R | a < x};
(f) [a,∞) = {x ∈ R | a ≤ x};
(g) (−∞, b) = {x ∈ R | x < b};
(h) (−∞, b] = {x ∈ R | x ≤ b};
(i) (−∞,∞) = R.

Intervals of types (a), (e), (g), and (i) are called open intervals, and intervals of
types (d), (f), (h, and (i) are called closed intervals.

Proposition 7.9. Any two intervals have the same cardinality.

Proof. We show part of this and leave the remaining details to the reader.
First note that the function x 7→ x−a

b−a maps (a, b) bijectively onto (0, 1). So all
intervals of type (a) have the same cardinality.

Next consider the function x 7→ ex, which produces a bijective correspondence
between R and (0,∞).

Finally consider the function arctan : R → (−π
2 , π

2 ), which is also bijective.
This demonstrates how all of the open intervals are equivalent. �
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4. Base β Expansions

Let A be a set. A sequence in A is a function a : Z+ → A. We write ai to mean
a(i), and we write {ai}∞i=1, or simply {ai}, to denote the function a.

Let β be an integer such that β ≥ 2, and let Nβ = {0, 1, . . . , β − 1}. Let
O = (0, 1) be the open unit interval in the real line. We are interested in relating
the set of sequences in Nβ , which is denoted by F(Z+, Nβ), to the set O.

Define a function
µ : Z → Nβ by µ(n) = r,

where n = βq + r with q, r ∈ Z and 0 ≤ r < β.
Define a function

ζ : R → Z by ζ(x) = max{n ∈ N | n ≤ x}.
For each k ∈ Z+, define a function

δβ,k : R → Nβ by δβ,k(x) = µ(ζ(βkx)).

This induces a function

δβ : O → F(Z+, Nβ) by δβ(x) = {δβ,k(x)}∞k=1.

Then δβ is an injective function, and we call δβ(x) the base β expansion of x.
Construct a partial inverse to δβ as follows.
Let {ai}∞i=1 be a sequence in Nβ and set B = {

∑k
i=1

ai

βi | k ∈ N}. Then B ⊂ O,
and in particular, B is a bounded set of real numbers. Set b = sup(B). For most
sequences, δβ(b) = {ai}∞i=1.

Call a sequence {ai}∞i=1 in Nβ a duplicator if there exists N ∈ N such that
ai = β−1 for all i > N . These are the only sequences which are not in the image of
the function δβ . If S = F(Z+, Nβ) r { duplicators }, then δβ : O → S is bijective.
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5. Uncountability

Proposition 7.10. The set R of real numbers is an uncountable set.

Proof. Since O = (0, 1) ⊂ R, it suffices to show that O is uncountable.
Let β = 10 so that we consider base 10 expansions of the elements in O, and

let µ, ζ, and δβ be as in the previous section.
Let f : N → O be any function; we will show that f is not surjective. Set

ai =

{
3 if βi(f(i)) 6= 3;
6 if βi(f(i)) = 3.

Set B = {
∑k

i=1
ai

10i | k ∈ N}. Then B ⊂ O, and in particular, B is a bounded set
of real numbers. Set b = sup(B). Then b is not in the image of f . �

We can be even more precise than this.

Proposition 7.11. |R| = 2ℵ0 .

Proof. Again let O = (0, 1). Since |R| = |O|, it suffices to prove that the cardinality
of O equals that of F(Z+, N2).

First construct a function

f : F(Z+, N2) → O by f(ai) = sup
{ k∑

i=1

ai

10i
| k ∈ Z+

}
.

This function is injective.
Next consider that δ2 : O → F(Z+, N2) is injective.
By the Schroeder-Bernstein theorem, there exists a bijective function O →

F(Z+, N2). �



CHAPTER 8

Lecture 8 - Sequences

1. Review

We described how the natural numbers can be build from axioms of set theory;
how to construct the integers from the natural numbers, and how to construct the
rationals from the integers.

We developed the real numbers as the set of cuts in the rational number line.
This set supports addition, multiplication, and an ordering satisfying these prop-
erties:

(F1) (a + b) + c = a + (b + c);
(F2) a + 0 = a;
(F3) a + (−a) = 0;
(F4) a + b = b + a;
(F5) (ab)c = a(bc);
(F6) a · 1 = a;
(F7) a · a−1 = 1 for a 6= 0;
(F8) ab = ba;
(F9) (a + b)c = ac + bc;
(O1) a ≤ a;
(O2) a ≤ b and b ≤ a implies a = b;
(O3) a ≤ b and b ≤ c implies a ≤ c;
(O4) a ≤ b or b ≤ a;
(O5) a ≤ b implies a + c ≤ b + c;
(O6) a ≤ b implies ac ≤ bc for c ≥ 0.

(CM) every set of real numbers bounded above has a least upper bound.
Property (CM) is equivalent to the lack of gaps in the real number line; this lack
of gaps was proved using the Cantor-Dedekind Theorem. The Schroeder-Bernstein
theorem helped show that there is a linear order on the cardinal numbers. It is
the lack of gaps which insures that base β expansions produce real numbers, which
leads to the proof the |Q| < |R|.

Exercise 8.1. Recommended practice exercises from the book:
Chapter 0 exercises 10,13,14,21,32,36,38,40

37
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2. Triangle Inequality

Let x ∈ R, and define the absolute value of x, denoted by |x|, by

|x| =

{
x if x ≥ 0;
−x if x < 0.

Clearly −|x| ≤ x ≤ |x| for all x ∈ R. We think of this as the distance between x
and 0. Moreover, we think of |x − a| as the distance between x and another real
number a.

Proposition 8.1. Let a, b ∈ R. If a ≤ b, then −b ≤ −a.

Proof. This uses property (O5). Take a ≤ b and add −b to both sides to get
a− b ≤ 0. Now add −a to both sides to get −b ≤ −a. �

Proposition 8.2 (Triangle Inequality). Let a, b ∈ R. Then |a + b| ≤ |a|+ |b|.

Proof. We have −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|. Repeated application of property
(O6) yield

−(|a|+ |b|) ≤ a + b ≤ |a|+ |b|.
Multiply both sides of the left inequality by −1 to obtain −(a + b) ≤ |a|+ |b|. Now
|a + b| is either a + b or −(a + b), and in either case, we see that |a|+ |b| is greater
than it. �
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3. Sequences

Let A be a set. A sequence in A is a function a : Z+ → A. We write an to
mean a(n), and we write {an}∞n=1, or simply {an}, to denote the function a. We
will primarily be interested in sequences of real numbers, that is, sequences in R.

4. Limit Points of Sequences

Let {an}∞n=1 be a sequence of real numbers and let L ∈ R. We say that L is a
limit point of {an}∞n=1 if

∀ε > 0 ∃N ∈ Z+ 3 n ≥ N ⇒ |an − L| < ε.

In this case, we say that {an}∞n=1 converges to L.

Proposition 8.3. Let {an}∞n=1 be a sequence in R and let L1, L2 ∈ R. If {an}∞n=1

converges to L1 and to L2, then L1 = L2.

Proof. Suppose not, and set d = |L1 − L2|; then d is positive. Let ε = d
4 . Then by

definition of limit, there exist positive integers N1 and N2 such that n ≥ N1 implies
that |an − L1| < ε, and n ≥ N2 implies that |an − L2| < ε.

Let N = max{N1, N2}. Then for n ≥ N ,

d = |L1 − L2|
= |L1 − an + an − L2|
= |L1 − an|+ |an − L2| by the Triangle Inequality

= |an − L1|+ |an − L2|
≤ ε + ε

=
d

2
.

This is a contradiction; thus L1 = L2. �

Thus limits are unique when they exist, justifying the article the limit instead
of “a limit point”. We write L = limn→∞ an to say that {an}∞n=1 converges to L.

If a sequence has a limit, we say that it is convergent; otherwise it is divergent.

Example 8.4. Show that limn→∞
1
n = 0.

Proof. Let ε > 0. By the Archimedean Principle, there exists N ∈ N such that
N > 1

ε . This gives 1
N < ε. Note that if n ≥ N , then 1 ≥ N

n , and 1
N ≥ 1

n . Thus for
n ≥ N we have

| 1
n
− 0| = 1

n
≤ 1

N
< ε.

This proves that limn→∞
1
n = 0. �

Let {an}∞n=1 be a sequence of real numbers. The image of {an}∞n=1 is the image
of the sequence as a function, that is, it is the set

{an | n ∈ Z+}.
Note that there is much more information in a sequence than in its image; for
example, the sequences {1 + (−1)n}∞n=1 and {0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, . . . }
have the same image; the common image is {0, 2}, a set containing two elements.
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5. Bounded Sequences

We say that {an}∞n=1 is bounded above if there exists a ∈ R such that a ≥ an

for every n ∈ Z+.
We say that {an}∞n=1 is bounded below if there exists b ∈ R such that b ≤ an

for every n ∈ Z+.
We say that {an}∞n=1 is bounded if it is both bounded above and bounded below.

Equivalently, {an}∞n=1 is bounded if there exists M > 0 such that an ∈ [−M,M ]
for every n ∈ Z+.

Proposition 8.5. Every convergent sequence is bounded.

Proof. Let {an}∞n=1 be a convergent sequence with limit L. Let N be so large that
for n ≥ N we have |an−L| < 1. And |L| to both sides of this inequality and apply
the triangle inequality to get, for every n ≥ N ,

|an| ≤ |an − L|+ |L| < 1 + |L|.
There are only finitely many terms of the sequence between a1 and aN−1; set

M = max{|a1|, |a2|, . . . , |aN−1|, 1 + |L|}.
Then M ≥ an for every n ∈ Z+, so {an}∞n=1 is bounded. �



CHAPTER 9

Lecture 9 - Arithmetic of Sequences

1. Definitions of Sup and Inf

Recall the following definitions.
Let S ⊂ R and let x ∈ R.
We say that x = maxS if
(a) x ≥ s for every s ∈ S;
(b) x ∈ S.
We say that x = minS if
(a) x ≤ s for every s ∈ S;
(b) x ∈ S.
We say that x = supS if
(a) x ≥ s for every s ∈ S;
(b) a ≥ s for every s ∈ S ⇒ a ≥ s.
We say that x = supS if
(a) x ≥ s for every s ∈ S;
(b) a ≥ s for every s ∈ S ⇒ a ≥ s.

2. Examples of Sup and Inf

Example 9.1. Let S be a nonempty bounded subsets of R. Show that inf S ≤
supS. What can be said if inf S = supS?

Proof. Since S is nonempty, there exists s ∈ S. Then inf S ≤ s and s ≤ supS. By
transitivity of order, inf S ≤ supS.

If inf S = sup S, then S contains only one element. �

Example 9.2. Let S and T be nonempty bounded subsets of R. Show if S ⊂ T ,
the inf T ≤ inf S ≤ supS ≤ supT .

Proof. Let s ∈ S. Then s ∈ T , so inf T ≤ s. Thus inf T is a lower bound for S, so
inf T ≤ inf S. Similarly, supS ≤ supT . That inf S ≤ supS is true is above. �

41
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Example 9.3. Let S and T be nonempty bounded subsets of R. Show that sup(S∪
T ) = max{supS, supT}.

Proof. Either max{supS, supT} = supS or max{supS, supT} = sup T .
Suppose that max{supS, supT} = supS; in this case, supT ≤ supS. Since

S ⊂ S ∪ T , we have supS ≤ sup(S ∪ T ) by part (a).
Now let x ∈ S ∪ T . Then x is either in S or T . If x ∈ S, then x ≤ supS. If

x ∈ T , then x ≤ supT ≤ supS. Thus supS is an upper bound for S∪T . Therefore
sup(S ∪ T ) ≤ supS.

Since sup S ≤ sup(S ∪ T ) and sup(S ∪ T ) ≤ supS, it follows that supS =
sup(S ∪ T ).

Finally, if max{supS, supT} = sup T , the above proof is valid, with the roles
of S and T reversed. �

Example 9.4. Show that if a > 0 then there exists n ∈ N such that 1
n < a < n.

Proof. Let b = max{a, 1
a}. By the Archimedean property, there exists n ∈ N such

that n > b. Since a ≤ b, we have a < n. Also since 1
a ≤ b, we have 1

a < n. Thus by
Theorem 3.2.(vii), we have 1

n < a. �

Example 9.5. Let a, b ∈ R such that a < b. Show that there exist infinitely many
rational numbers between a and b.

Proof. Suppose not. The the set S = (a, b) ∩ Q is finite, so it has a minimum,
say c = min S. But then Theorem 4.7 tells us that there exists d ∈ Q such that
a < d < c. But then d < b, so d ∈ S. This contradicts that c = minS. �

Example 9.6. Let A and B be nonempty bounded subsets of R and let

S = {x ∈ R | x = a + b for some a ∈ A, b ∈ B}.
(a) Show that sup S = supA + supB.
(b) Show that inf S = inf A + inf B.

Lemma 9.7. Let A ⊂ R be bounded above and suppose that x < supA. Then there
exists a ∈ A such that x < a.

Proof of Lemma. Suppose not; then for every a ∈ A, we have a ≤ x. Then x is an
upper bound for A, so supA ≤ x, contrary to our assumption on x. �

Proof of Example. We prove (a); the proof for (b) is symmetric. It suffices to show
that supS ≤ supA + supB and that supA + supB ≤ supS.

Let s ∈ S. Then s = a + b for some a ∈ A and b ∈ B. Then a ≤ supA and
b ≤ supB, so a + b ≤ supA + supB. Thus supA + supB is an upper bound for S,
so supS ≤ supA + supB.

Suppose that supS < supA + supB. Then supS − supB < supA, so there
exists a ∈ A such that sup S − supB < a. From this, supS − a < supB, so there
exists b ∈ B such that supS − a < b. Let s = a + b ∈ S. We have supS < s, a
contradiction. Therefore supA + supB ≤ supS. �



3. ARITHMETIC OF SEQUENCES 43

3. Arithmetic of Sequences

Lemma 9.8. Let a, b ∈ R. Then |ab| = |a||b|.

Reason. Break this into four cases and see the result. �

Proposition 9.9. Let {sn}∞n=1 be a convergent sequence of real numbers, and let
k ∈ R. Then

k lim
n→∞

sn = lim
n→∞

(ksn).

Proof. Let ε > 0, and set s = limn→∞ sn. Since sn → s, there exists N ∈ Z+ such
that

|sn − s| < ε

k
.

Then
|ksn − ks| < ε.

�

Proposition 9.10. Let {sn}∞n=1 and {tn}∞n=1 be convergent sequences of real num-
bers. Then the sequence {sn + tn}∞n=1 converges, and

lim
n→∞

(sn + tn) = lim
n→∞

sn + lim
n→∞

tn.

Proposition 9.11. Let {sn}∞n=1 and {tn}∞n=1 be convergent sequences of real num-
bers. Then the sequence {sntn}∞n=1 converges, and

lim
n→∞

(sntn) = ( lim
n→∞

sn)( lim
n→∞

tn).

Proposition 9.12. Let {sn}∞n=1 be a convergent sequence of nonzero real numbers.
Then

1
limn→∞ sn

= lim
n→∞

(
1
sn

).

Lemma 9.13. Let {sn}∞n=1 be a sequence of nonzero real numbers such that
limn→∞ |sn| converges to a positive real number. Then there exists m > 0 such
that |sn| > m for all n.





CHAPTER 10

Lecture 10 - Monotone Sequences

1. Infinity

The extended real numbers are R ∪ {±∞}.
If A is unbounded above, then supA = ∞.
If A is unbounded below, then inf A = −∞.
If lim an = ±∞, we say that “diverges to +- infinity”.
Arithmetic of infinity based on sequences can be developed.
We say that lim sn > 0 if {sn}∞n=1 converges to a positive real number, or if

{sn}∞n=1 diverges to ∞.

Proposition 10.1. Let {sn}∞n=1 be a sequence of real numbers such that lim sn > 0.
Then there exists N ∈ Z+ and P > 0 such that if n ≥ N , then sn > P .

Proof. If sn → +∞, this follows directly from the definition. Thus assume that
lim sn = L > 0, and set ε = L

2 . Let N be so large that |sn − L| < ε for n ≥ N .
Then for such n, sn > L− ε. Let P = L− ε. �

Proposition 10.2. Let {sn}∞n=1 and {tn}∞n=1 be sequences of positive real numbers
such that lim sn = +∞ and lim tn > 0. Then

(a) lim(sn + tn) = +∞;
(b) lim(sntn) = +∞.

Proof. Let M > 0.
Since lim tn > 0, there exists N1 ∈ Z+ and P > 0 such that if n ≥ N1 then

tn > P .
Since lim sn = +∞, there exists N2 ∈ Z+ such that if n ≥ N2 then sn > M

P .
Set N = maxN1, N2; for n ≥ N , we have

sntn >
M

P
P = M.

�
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Proposition 10.3. Let {sn}∞n=1 be a sequence of positive real numbers. Then

lim sn = +∞⇔ lim
1
sn

= 0.

Proof. To show an if and only if statement, we show both directions.
(⇒) Suppose that lim sn = +∞. Let ε > 0, set M = 1

ε . Since sn → +∞,
there exists N ∈ Z+ such that if n ≥ N , then sn > M . Then for n ≥ N , we have
| 1
sn
− 0| = 1

sn
< ε.

(⇐) Suppose that lim 1
sn

= 0. Let M > 0 and set ε = 1
M . Since 1

sn
→ 0, there

exists N ∈ Z+ such that if n ≥ N , then | 1
sn
− 0| < ε. Since sn is positive, this is

the same as 1
sn

< ε, which implies that sn > M . Thus sn → +∞. �
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2. Monotone Sequence

Let {sn}∞n=1 be a sequence of real numbers.
We say that {sn}∞n=1 is increasing if

m ≤ n ⇒ sm ≤ sn.

We say that {sn}∞n=1 is decreasing if

m ≤ n ⇒ sm ≥ sn.

We say that {sn}∞n=1 is monotone if it is either increasing or decreasing.

Proposition 10.4. Let {sn}∞n=1 be a monotone sequence.
(a) If {sn}∞n=1 is bounded, then it converges.
(b) If {sn}∞n=1 is unbounded and increasing, then it diverges to +∞.
(c) If {sn}∞n=1 is unbounded and decreasing, then it diverges to −∞.

Proof.

(a) Suppose that {sn}∞n=1 is bounded. Also assume that it is increasing; the
proof for decreasing will be analogous. Let S = {sn | n ∈ Z+} be the image of the
sequence, and set u = supS. Since S is bounded, u ∈ R. Clearly sn ≤ u for every
n ∈ Z+. We show that lim sn = u.

Let ε > 0. Since u− ε is not an upper bound for S, there exists s ∈ S such that
u− ε < s < u. Now s = sN for some N ∈ Z+, and since {sn}∞n=1 is increasing, we
have u− ε < sn < u for every n ≥ N . Thus |sn− u| < ε for n ≥ N ; this shows that
sn → u.

(b) Let M > 0. �

Proposition 10.5. Let {sn}∞n=1 be a sequence of real numbers. Set

uN = sup{sn | n ≥ N}
and

vN = inf{sn | n ≥ N}.
Then {un}∞n=1 is a decreasing sequence and {vn}∞n=1 is an increasing sequence.

Proof. �

Let {sn}∞n=1 be a sequence of real numbers. Define

lim sup sn = lim
N→∞

sup{sn | n ≥ N}

and
lim inf sn = lim

N→∞
inf{sn | n ≥ N}.

Proposition 10.6. Let {sn}∞n=1 be a sequence of real numbers. Then {sn}∞n=1

converges if and only if lim inf sn = lim sup sn, in which case lim inf sn = lim sn =
lim sup sn.
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3. Cluster Points of Sequences

Let {sn}∞n=1 be a sequence in R, and let c ∈ R. We say that c is a cluster point
of {sn}∞n=1 if

∀ε > 0 ∀N ∈ Z+ ∃n ≥ N 3 |sn − c| < ε.

Proposition 10.7. Let {sn}∞n=1 be a bounded sequence of real numbers. Let C be
the set of cluster points of {sn}∞n=1. Then

(a) lim sup sn ∈ C;
(b) lim inf sn ∈ C;
(c) supC = lim sup sn;
(d) inf C = lim inf sn.

Proof. Since {sn}∞n=1 is bounded, lim sup sn and lim inf sn exist as real numbers.
Let s = lim sup sn; we will prove (a) and (c), the proofs for (b) and (d) being
analogous.

For (a), suppose not; then s /∈ C. That is, there exists ε > 0 and N ∈ Z+ such
that |sn− s| > ε for all n ≥ N . Now either there exists n ≥ N such that sn > s+ ε,
or for every n ≥ N , sn < s− ε.

In the first case, s cannot be an upper bound for S, a contradiction. In the
second case, s− ε

�



CHAPTER 11

Lecture 11 - Lim Sup and Lim Inf

1. lim sup and lim inf

Let {sn}∞n=1 be a sequence of real numbers. Define

lim sup sn = lim
N→∞

sup{sn | n ≥ N}

and
lim inf sn = lim

N→∞
inf{sn | n ≥ N}.

The sequence {sup{sn | n ≥ N}∞N=1 is decreasing and the sequence {inf{sn |
n ≥ N}∞N=1 is increasing, so they both converge, or diverge to ±∞.

Proposition 11.1. Let {sn}∞n=1 be a bounded sequence of real numbers. Then
lim inf sn ≤ lim sup sn.

Lemma 11.2. Let {sn}∞n=1 and {tn}∞n=1 be sequences such that sn ≤ tn for every
n ∈ N. If they both converge, we have lim sn ≤ lim tn.

proof of Lemma. Let s = lim sn and t = lim tn; suppose by way of contradiction
that t < s. Set ε = t−s

2 ; then there exists N1 ∈ Z+ such that n ≥ N1 implies
|sn − s| < ε/2, and there exists N2 ∈ Z+ such that n ≥ N2 implies |tn − s| < ε/2.
Let N = max{N1, N2}; then by and application of the triangle inequality, tn < sn,
a contradiction. �

proof of Proposition. For every N ∈ Z+, we have inf{sn | n ≥ N} ≤ sup{sn | n ≥
N}. Thus the result is immediate from the lemma. �
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Proposition 11.3. Let {sn}∞n=1 be a sequence of real numbers. Then {sn}∞n=1

converges if and only if lim inf sn = lim sup sn, in which case lim inf sn = lim sn =
lim sup sn.

Lemma 11.4. Let x, y ∈ R. If x ≤ y + ε for every ε > 0, then x ≤ y.

Proof. Suppose that x > y, and let ε = x−y
2 . Then y + ε = x− ε, so x > y + ε. �

Proof.

(⇒) Suppose that {sn}∞n=1 converges to a real number s. Let ε > 0. We wish
to show that lim sup sn ≤ s + ε for every ε > 0, whence lim sup sn ≤ s.

Since sn → s, there exists N ∈ Z+ such that |sn − s| < ε for n ≥ N . Then
sup{sn | n ≥ N} < s + ε. Since {sup{sn | n ≥ N}}∞N=1 is a decreasing sequence,
we have lim sup sn < s + ε. Therefore lim sup sn ≤ s.

Similarly, s ≤ lim inf sn, so

s ≤ lim inf sn ≤ lim sup sn ≤ s,

so
lim inf sn = s = lim sup sn.

(⇐) Now suppose that lim inf sn = lim sup sn, and label this common value s.
We want to show that lim sn = s.

Let ε > 0. Since s = lim sup sn, there exists N1 ∈ Z+ such that

| sup{sn | n ≥ N1} − s| < ε.

In particular, sup{sn | n ≥ N1} < s + ε, so sn < s + ε for n ≥ N1. Similarly,
since s = lim inf sn, there exists N2 ∈ Z+ such that sn > s − ε for n ≥ N2. Let
N = max{N1, N2}. Then for n ≥ N , we have s−ε < sn < s+ε, that is, |sn−s| < ε.
Thus sn → s. �



CHAPTER 12

Lecture 12 - Cauchy Sequences

1. Cauchy Sequences

Let {sn}∞n=1 be a sequence of real numbers. We say that {sn}∞n=1 is a Cauchy
sequence if

∀ε > 0 ∃N ∈ Z+ 3 m,n ≥ N ⇒ |sm − sn| < ε.

Proposition 12.1. Let {sn}∞n=1 be a Cauchy sequence. Then {sn}∞n=1 is bounded.

Proof. Since {sn}∞n=1 is Cauchy, there exists N ∈ Z+ such that if m,n ≥ N , then
|sm − sn| < 1. In particular, for every n ≥ N , we have |sn − sN | < 1. Set

M = max{s1, s2, . . . , sN−1, sN + 1}.
Then sn ∈ [−M,M ] for every n ∈ Z+. �

Proposition 12.2. Let {sn}∞n=1 be a sequence of real numbers. Then {sn}∞n=1 is
convergent if and only if it is a Cauchy sequence.

Proof. We prove each direction of the double implication.
(⇒) Assume that the sequence is convergent. Let ε > 0, and set s = lim sn.

Then there exists N ∈ Z+ such that if n ≥ N , then |sn − s| < ε/2. Then for
m,n ≥ N , we have

|sm − sn| = |sm − s + s− sn|
= |sm − s|+ |sn − s|

≤ ε

2
+

ε

2
= ε.

(⇐) Assume that the sequence is a Cauchy sequence. Then it is bounded, and
so its limit superior and inferior exist as real numbers. By a previous proposition,
it suffices to show that lim inf sn = limsupsn.

Let ε > 0. Then there exists N ∈ Z+ such that if m,n ≥ N , then |sm−sn| < ε.
In particular, |sn − sN | < ε

2 for all n ≥ N , so sN + ε
2 is an upper bound for

{sn | n ≥ N}. Thus sup{sn | n ≥ N} ≤ sN + ε
2 , and therefore lim sup sn ≤ sN + ε

2 .
Similarly lim inf sn ≥ sN − ε

2 . Rearranging these inequalities gives

lim sup sn −
ε

2
≤ sN ≤ lim inf sn +

ε

2
,

or
lim sup sn − lim inf sm < ε.

Since ε is arbitrary, we have lim sup sn = lim inf sn. �
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2. Subsequences

Let s : Z+ → R be a sequence of real numbers. A subsequence of s is the
composition s ◦ n of s with a strictly increasing sequence n : Z+ → Z+ of positive
integers.

If we denote the sequence s by {sn}∞n=1 and the sequence n by {nk}∞k=1, then
we denote the subsequence by {snk

}∞k=1.
Note that since the function n : Z+ → Z+ is strictly increasing, it is injective.

Thus if N ∈ Z+, there exists k ∈ Z+ such that nk ≥ N ; otherwise, we would have
an injective function from an infinite set into the finite set {m ∈ Z+ | m < N}.

Proposition 12.3. Let {sn}∞n=1 be a sequence of real numbers and let s ∈ R. Then
{sn}∞n=1 converges to s if and only if every subsequence of {sn}∞n=1 converges to s.

Proof. We prove both directions.
(⇐) Note that a sequence is a subsequence of itself. Thus if every subsequence

of {sn}∞n=1 converges to s, then in particular the sequence itself converges to s.
(⇒) Suppose that lim sn = s. Let {snk

} be a subsequence of {sn}∞n=1, and
let ε > 0. Then there exists N ∈ Z+ such that if n ≥ N , then |sn − s| < ε.
We know that there exists K ∈ Z+ such that nK ≥ N ; moreover, since {nk} is
strictly increasing, if k ≥ K, then nk ≥ nK ≥ N . Therefore, for k ≥ K, we have
|snk

− s| < ε. �

Proposition 12.4. Let {sn}∞n=1 be a sequence of real numbers. Then {sn}∞n=1 has
a monotonic subsequence.

Proof. Say that the ith term of {sn}∞n=1 is dominant if sj < si for every j > i.
Case 1: There are infinitely many dominant terms. In this case, set

n1 = min{n ∈ Z+ | sn is dominant}.
Then recursively set

nk+1 = min{n ∈ Z+ | sn is dominant and n > nk};
this set is nonempty by the hypothesis of this case. Then {snk

} is a decreasing
sequence.

Case 2: There are finitely many dominant terms. In this case, set

n0 = max{n ∈ Z+ | sn is dominant}.
Then recursively set

nk+1 = min{n ∈ Z+ | sn > snk
and n > nk};

this set is nonempty because sn0 was the last dominant term. Now {snk
} is an

increasing sequence. �

Corollary 12.5. Every bounded sequence of real numbers has a convergent subse-
quence.

Proof. It is clear that if a sequence is bounded, then every subsequence is also
bounded. Thus a bounded sequence has a bounded monotonic subsequence, which
must converge. �
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3. Cluster Points and Subsequential Limits

Let {sn}∞n=1 be a sequence of real numbers, and let c ∈ R.
We say that c is a cluster point of {sn}∞n=1 if

∀ε > 0 ∀N ∈ Z+ ∃n ≥ N 3 |sn − c| < ε.

We say that c is a subsequential limit of {sn}∞n=1 if there exists a subsequence
{snk

}∞k=1 such that limk→∞ snk
= c.

Proposition 12.6. Let {sn}∞n=1 be a sequence of real numbers, and let c ∈ R.
Then c is a cluster point if and only if c is a subsequential limit.

Proof. Exercise. �

4. Neighborhoods

Let x0 ∈ R. An ε-neighborhood of x0 is an open interval of the form (x0 −
ε, x0 + ε), where ε > 0.

More generally, a neighborhood of x0 is a subset Q ⊂ R such that there exists
ε > 0 with (x0 − ε, x0 + ε) ⊂ Q.

A deleted neighborhood of x0 is a set of the form Q r {x0}, where Q is a
neighborhood of x0.

Proposition 12.7. Let {sn}∞n=1 be a sequence of real numbers, and let s ∈ R.
Then s is the limit of {sn}∞n=1 if and only if every neighborhood of s contains sn

for all but finitely many n.

Proof. Gaughan page 35 Lemma. �

Proposition 12.8. Let {sn}∞n=1 be a sequence of real numbers, and let c ∈ R.
Then c is a cluster point of {sn}∞n=1 if and only if every neighborhood of c contains
sn for infinitely many n.

Proof. Exercise. �





CHAPTER 13

Lecture 13 - Open and Closed Sets

1. Neighborhoods

Let x0 ∈ R. An ε-neighborhood of x0 is an open interval of the form (x0 −
ε, x0 + ε), where ε > 0.

More generally, a neighborhood of x0 is a subset Q ⊂ R such that there exists
ε > 0 with (x0 − ε, x0 + ε) ⊂ Q.

A subset U ⊂ R is called open if

∀u ∈ U∃ε > 0 3 |x− u| < ε ⇒ x ∈ U.

Or, in other words, U is open if every point in U is surrounded by an ε-neighborhood
which is completely contained in U .

Proposition 13.1. Let T denote the collection of all open subsets of R. Then
(a) ∅ ∈ T and R ∈ T;
(b) if O ⊂ T, then ∪O ∈ T;
(c) if O ⊂ T is finite, then ∩O ∈ T.

Proof.
(a) The condition for openness is vacuously satisfied by the empty set. For R,

consider x ∈ R. Then (x− 1, x + 1) ⊂ R. Thus R is open.
(b) Let O ⊂ T; that is, O is a collection of open sets. Select x ∈ ∪O. Then x ∈ U

for some U ∈ O. Since U is open, there exists ε > 0 such that (x − ε, x + ε) ⊂ U .
Since U ⊂ ∪O, it follows that (x− ε, x + ε) ⊂ ∪O. Thus ∪O is open.

(c) Let O ⊂ T be a finite collection of open sets. Since O is finite, we may write
O = {U1, U2, . . . , Un}, where Ui is an open set for i = 1, . . . , n. If ∩O is empty, we
are done, so assume that it nonempty, and select x ∈ ∩O. For each i, there exists
εi such that (x− εi, x+ εi) ⊂ Ui. Set ε = min{ε1, . . . , εn}. Then (x− ε, x+ ε) ⊂ ∩O.
Thus ∩O is open. �
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Lemma 13.2. Let O be a collection of open intervals. If ∩O is nonempty, then ∪O

is an open interval.

Proof. By hypothesis, there exists x ∈ ∩O. Write O as a family of sets:

O = {Oα | α ∈ A},
where A is an indexing set. Now Oα is an open interval; we label its endpoints by
letting Oα = (aα, bα), where aα, bα ∈ R. Set

a = inf{aα | α ∈ A} and b = sup{bα | α ∈ A}.
Claim: ∪O = (a, b). We prove both directions of containment.
(⊂) Let y ∈ ∪O. Then y ∈ Oα for some α. Thus a ≤ aα < y < bα ≤ b, so

y ∈ (a, b).
(⊃) Let y ∈ (a, b). Assume that y ≤ x; the proof for y ≥ x is analogous. Now

a < y, and since a = inf{aα | α ∈ A}, so there exists α ∈ A such that a ≤ aα < y.
Also x ∈ Oα so aα < y ≤ x < bα; thus y ∈ (aα, bα) = Oα, and y ∈ ∪O. �

Proposition 13.3. Let U ⊂ R. Then U is open if and only if there exists a
countable collection O of disjoint open intervals such that U = ∪O.

Proof. Put a relation on U by defining u1 ∼ u2 if there exists an open interval O
such that u1, u2 ∈ O and O ⊂ U .

Claim 1: This is an equivalence relation. We wish to show that ∼ is reflexive,
symmetric, and transitive.

Reflexive Let u ∈ U . Since U is open, there exists ε > 0 such that (u−ε, u+ε) ⊂
U . Let O = (u− ε, u + ε); then u ∈ O and O ⊂ U , so u ∼ u.

Symmetric Let u1, u2 ∈ U , and assume u1 ∼ u2. Then there exists an open
interval O such that u1, u2 ∈ O and O ⊂ U . But then u2, u1 ∈ O, so u2 ∼ u1.

Transitive Let u1, u2, u3 ∈ U , and assume that u1 ∼ u2 and u2 ∼ u3. Then
there exist open intervals O1, O2 ⊂ U such that u1, u2 ∈ O1 and u2, u2 ∈ O2. Now
u2 ∈ O1∩O2, so by the Lemma, O1∪O2 is an interval contained in U and containing
u1 and u3. Thus u1 ∼ u3.

Claim 2: The equivalence classes of this equivalence relation are open intervals.
Let u ∈ U and let u denote the equivalence class of u. For every v ∈ U there exists
and open interval Ov such that u, v ∈ Ov and Ov ⊂ U . Let O = {Ov | v ∈ u}.
Then u ∈ ∩O, so ∪O is an open interval; it suffices to show that u = ∪O. Clearly
u ⊂ ∪O. Moreover, if x ∈ ∪O, then x ∈ Ov for some v, so x ∼ u and x ∈ u. Thus
u = ∪O.

Claim 3: Distinct equivalence classes have empty intersection. This is true
for every equivalence relation.

Claim 4: There are only countably many equivalence classes. Let O = {Oα |
α ∈ A} be the collection of equivalence classes, where A is some indexing set.
Let Oα = (aα, bα). We have seen that there exists qα ∈ Q such that such that
aα < qα < bα. Let Q = {qα | α ∈ A}. Then |O| = |A| = |Q| ≤ |Q|; since Q is
countable, so is O. �
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2. Closed Sets

A subset F ⊂ R is closed if its complement R r F is open.

Proposition 13.4. Let F denote the collection of all closed subsets of R.
(a) ∅ ∈ F and R ∈ F;
(b) if C ⊂ F, then ∩C ∈ F;
(c) if C ⊂ F is finite, then ∪C ∈ T.

Proof. Apply DeMorgan’s Laws to Proposition 13.1. �

Proposition 13.5. Let F ⊂ R. Then F is closed if and only if every sequence in
F which converges in R has a limit in F .

Proof. We prove both directions.
(⇒) Suppose that F is closed, and let {an}∞n=1 be a sequence in F which

converges to a ∈ R. We wish to show that a ∈ F . Suppose not; then a ∈ R r F .
This set is open, so there exists ε > 0 such that (a− ε, a + ε) ⊂ R r F . Thus there
exists N ∈ Z+ such that an ∈ R r F for all n ≥ N . This contradicts that the
sequence is in F .

(⇐) Suppose that F is not closed; we wish to construct a sequence in F which
converges to a point not in F . Since F is not closed, then R r F is not open. This
means that there exists a point x ∈ R r F such that for every ε > 0, (x− ε, x + ε)
is not a subset of R r F ; that is, (x− ε, x + ε) contains a point in F . For n ∈ Z+,
let xn ∈ (x − 1

n , x + 1
n ) ∩ F . Then {xn}∞n=1 is a sequence in F , but limn→∞ xn =

x /∈ F . �
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3. Accumulation Points

A deleted neighborhood of x0 is a set of the form Q r {x0}, where Q is a
neighborhood of x0.

Let S ⊂ R. An accumulation point of S is a point s ∈ R such that every deleted
neighborhood of s contains an element of S.

We note that an accumulation point of a set S may or may not be an element
of S.

Proposition 13.6. Let F ⊂ R. Then F is closed if and only if F contains all of
its accumulation points.

Proof. Prove both directions.
(⇒) Suppose F is closed, and let x ∈ R. Suppose x /∈ F ; we show that x is

not an accumulation point of F . Since x ∈ F , then x ∈ R r F , which is open.
Therefore there exists ε > 0 such that U = (x− ε, x + ε) ⊂ R r F . Then U r {x}
is a deleted neighborhood of x whose intersection with F is empty, and x is not an
accumulation point of F .

(⇐) Suppose F contains all of its accumulation points. We show that the
complement of F is open. Let x ∈ R r F . Then x is not an accumulation point of
F . Then there exists a deleted neighborhood U of x such that U ⊂ R r F . This
neighborhood contains a deleted epsilon neighborhood, say (x−ε, x+ε)r{x}. This
set is in the complement of F , and since x /∈ F , we have (x − ε, x + ε) ⊂ R r F .
Thus R r F is open, so F is closed. �

Theorem 13.7 (Bolzano-Weierstrass Theorem). Every bounded infinite set of real
numbers has an accumulation point.

Proof. Let S be a bounded infinite set. Since S is infinite, there exists an injective
function s : Z+ → S; view this as a sequence {sn}∞n=1. This sequence has a
monotonic subsequence, say {snk

}, which is also bounded and hence convergent,
say to s ∈ R. Suppose that s = snK

for some K; then, since s is the limit and
the sequence is monotonic, it is easy to see that snk

= s for every k ≥ K. This
contradicts that the sequence was injective. Thus s 6= snk

for every k ∈ Z+.
Now for every ε > 0, there exists K ∈ Z+ such that |snK

− s| < ε; that is,
snK

∈ (s− ε, s + ε), and snK
6= s. Thus s is an accumulation point for S. �



CHAPTER 14

Lecture 14

It was a nice day outside.
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CHAPTER 15

Lecture 15 - Limits of Functions

1. Limit of a Function

Let D ⊂ R and let x0 ∈ R be an accumulation point of D. Let f : D → R and
let L ∈ R. We say that L is the limit of f at x0, and write L = limx→x0 f(x), if

∀ε > 0∃δ > 0 3 0 < |x− x0| < δ ⇒ |f(x)− L| < ε.

Proposition 15.1. Let D ⊂ R and let x0 ∈ R be an accumulation point of D. Let
f : D → R and let L ∈ R. Then limx→x0 f(x) = L if and only if every deleted
neighborhood of x0 is mapped by f into a neighborhood of L.

2. Main Examples

Do you know your asymptote from a hole in the graph?
Let D = (−∞, 0) ∪ (0,∞) and consider these examples of f : D → R.

Example 15.2 (Asymptote). Let f(x) = 1
x .

Example 15.3 (Hole in the Graph). Let f(x) = x2

x .

Example 15.4 (Jump). Let f(x) = |x|
x .

Example 15.5 (Oscillation). Let f(x) = sin( 1
x ).

Example 15.6 (Squeeze). Let f(x) = x sin( 1
x ).

Example 15.7 (Steps). For k ∈ Z+, let Dk = ( 1
2k , 1

2k−1 ). Let {yn}∞n=1 be any
sequence of real numbers. Consider the function f : (0, 1] → R given by f(x) = yk

if x ∈ Dk.
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3. One-Sided Limits

Let D ⊂ R and let x0 ∈ R. Let f : D → R and let L ∈ R.
The left side of D with respect to x0 is

Dx−0
= (−∞, x0) ∩D.

We say that x0 is a left-sided accumulation point of D if x0 is an accumulation point
of Dx−0

.
The right side of D with respect to x0 is

Dx+
0

= (x0,∞) ∩D.

We say that x0 is a right-sided accumulation point of D if x0 is an accumulation
point of Dx+

0
.

Clearly, x0 is an accumulation point of D if and only if x0 is either a left-sided
or right-sided accumulation point of D, or both. We say that x0 if a two-sided
accumulation point of D if it is both a left-sided and a right-sided accumulation
point of D.

The left restriction of f with respect to x0 is f �D
x
−
0

.

The right restriction of f with respect to x0 is f �D
x
+
0
.

We say that L is the left-sided limit of f at x0, and write L = limx→x−0
f(x), if

L is the limit of f �D
x
−
0

.

We say that L is the right-sided limit of f at x0, and write L = limx→x+
0

f(x),
if L is the limit of f �D

x
+
0
.

If x0 is a two-sided accumulation point of D, then L is a limit at x0 if and only
if L is both a left-sided and a right-sided limit at x0.
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4. Limits and Sequences

Lemma 15.8. Let {sn}∞n=1 be a sequence and let L ∈ R. Then {sn}∞n=1 converges
to L if and only if every subsequence of {sn}∞n=1 converges to L.

Proof. We already saw this. �

Proposition 15.9. Let f : D → R and x0 an accumulation point of D. Then f
has a limit at x0 if and only if for every sequence {xn}∞n=1 in D r {x0} converging
to x0, the sequence {f(xn)}∞n=1 converges.

Proof. We prove both directions.
(⇒) Suppose that f has a limit at x0, and let L be this limit. Let ε > 0 and let

{xn}∞n=1 be a sequence in D r {x0} which converges to x0. There exists δ > 0 such
that if 0 < |x−x0| < δ, then |f(x)−L| < ε. Also, since {xn}∞n=1 converges to x0 and
xn 6= x0 for all n, there exists N ∈ Z+ such that if n ≥ N , then 0 < |xn − x0| < δ.
Thus, for n ≥ N , |f(xn) − L| < ε. Thus limn→∞ f(xn) = L, and in particular,
{f(xn)}∞n=1 converges.

(⇐) Suppose that for every sequence {xn}∞n=1 in D r {x0} converging to x0,
the sequence {f(xn)}∞n=1 converges. We wish to show that f has a limit at x0.

First we claim that if {xn}∞n=1 and {yn}∞n=1 are sequence in D r {x0} which
converge to x0, with limits L1 and L2 respectively, then L1 = L2. To see this, form
a new sequence {zn}∞n=1 by z2n−1 = xn and z2n = yn. Then {zn}∞n=1 has a limit,
say L. Moreover, every subsequence of {zn}∞n=1 converges to L, and {xn}∞n=1 and
{yn}∞n=1 are subsequences. Thus L1 = L2 = L.

Now let L denote the common limit of the sequences under consideration; we
wish to show that L is the limit of f at x0. Suppose not. Then there exists ε > 0
such that for every δ > 0, there exists x with 0 < |x−x0| < δ but |f(x)−L| ≥ ε. For
n ∈ Z+, let xn ∈ R be and element such that 0 < |xn−x0| < 1

n but |f(xn)−L| ≥ ε.
Then {xn}∞n=1 converges to x0, but {f(xn)}∞n=1 does not converge to L. This
contradicts the hypothesis. �

Corollary 15.10. Let D ⊂ R and let x0 be an accumulation point of D. Let
f : D → R and g : D → R have limits at x0. Then so do f + g, fg, and f/g when
g is nonzero in D ∩ U for some neighborhood U of x0. Moreover,

(a) limx→x0(f(x) + g(x)) = limx→x0 f(x) + limx→x0 g(x);
(b) limx→x0(f(x) · g(x)) = limx→x0 f(x) · limx→x0 g(x);
(c) limx→x0(f(x)/g(x)) = limx→x0 f(x)/ limx→x0 g(x) (if appropriate).





CHAPTER 16

Lecture 16 - Continuity

1. Continuity

Let E ⊂ R. Let f : E → R and let x0 ∈ E. We say that f is continuous at x0

if
∀ε > 0∃δ > 0 3 |x− x0| ⇒ |f(x)− f(x0)| < ε.

If f is continuous at every point in E, we say that f is continuous (on E).
The following follows directly from previous definitions and results.

Proposition 16.1. Let E ⊂ R and let f : E → R with x0 ∈ E and x0 an
accumulation point of E. Then the following are equivalent:

(a) f is continuous at x0;
(b) f has a limit at x0 and limx→x0 f(x) = f(x0);
(c) For every sequence {xn}∞n=1 from E converging to x0, the sequence

{f(xn)}∞n=0 converges to f(x0).

Proposition 16.2. Let E ⊂ R. Let f : E → R and g : E → R. Let x0 ∈ E. If f
and g are continuous at x0, then so are f + g, fg, and f/g (if g(x0) 6= 0).

Proof. Combine Proposition 16.1 (c) with the limit laws for sequences. �

Proposition 16.3. Let D,E ⊂ R. Let f : D → E be continuous at x0 ∈ D and
g : E → R be continuous at y0 = f(x0) ∈ E. Then g ◦ f : D → R is continuous at
x0.

Proof. Let ε > 0. Since g is continuous at y0, there exists δ > 0 such that

|y − y0| < δ ⇒ |g(y)− g(y0)| < ε.

In particular, for y = f(x) for some x, we rewrite this as

|f(x)− f(x0)| < δ ⇒ |g(f(x))− g(f(x0))| < ε.

Since f is continuous at x0, there exists γ > 0 such that

|x− x0| < γ ⇒ |f(x)− f(x0)| < δ.

Then
|x− x0| < γ ⇒ |g(f(x))− g(f(x0))| < ε.

Thus g ◦ f is continuous at x0. �
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2. Continuous Preimage of Open Sets

Remark 16.1. Let E ⊂ R. Let f : E → R and let x0 ∈ E. Then f is continuous at
x0 if and only if We note that this is identical to the condition

∀ε > 0∃δ > 0 3 x ∈ (x0 − δ, x0 + δ) ⇒ f(x) ∈ (f(x0)− ε, f(x0) + ε).

Comment. This is simply a rewording of the definition. �

The next proposition implies that the continuous preimage of an open set is
open.

Proposition 16.4. Let U ⊂ R be open and let f : U → R. Then f is continuous
on U if and only if for every open set V ⊂ R, the set f−1(V ) is open.

Proof. We prove both directions.
(⇒) Suppose that f is continuous on U . Let V ⊂ R be open. If f−1(V ) = ∅ it

is open, so assume that f−1(V ) 6= ∅, and let x0 ∈ f−1(V ). We wish to show that
a neighborhood of x0 is contained in V .

Now f(x0) ∈ V . Since V is open, there exists ε > 0 such that (f(x0)−ε, f(x0)+
ε) ⊂ V . Since f is continuous, there exists δ > 0 such that if x ∈ (x0 − δ, x0 + δ),
then f(x) ∈ (f(x0)− ε, f(x0) + ε) ⊂ V . So (x0 − δ, x0 + δ) ⊂ f−1(V ). This shows
that f−1(V ) is open.

(⇐) Suppose that, for every open set V ⊂ R, the set f−1(V ) is open. Let x0 ∈ U
and let ε > 0. Let V = (f(x0) − ε, f(x0) + ε); this is an open set, so U = f−1(V )
is open, and x0 ∈ U , there exists δ > 0 such that (x0 − δ, x0 + δ) ⊂ U . Then
f((x0−δ, x0+δ)) ⊂ f(U) ⊂ V . Therefore |x−x0| < δ implies that |f(x)−f(x0)| < ε,
which shows that f is continuous at x0. �



CHAPTER 17

Lecture 17 - Connected and Compact Sets

1. Goal

We wish to prove the continuous image of a connected set is connected, and
that the continuous image of a compact set is compact.

Remark 17.1. Let X and Y be sets and let f : X → Y be a function. Let A,B ⊂ X
and C,D ⊂ Y . Then

(a) f−1(f(A)) ⊃ A and equality holds if f is injective;
(b) f(f−1(C)) ⊂ C and equality holds if f is surjective;
(c) f(A ∪B) = f(A) ∪ f(B);
(d) f−1(C ∪D) = f−1(C) ∪ f−1(D).
(e) f(A ∩B) ⊂ f(A) ∩ f(B) (give an example where equality fails);
(f) f−1(C ∩D) = f−1(C) ∩ f−1(D).

2. Connected Sets

A subset A ⊂ R is disconnected if there exist disjoint open sets U1, U2 ⊂ R with
A∩U1 6= ∅ and A∩U2 6= ∅ such that A ⊂ (U1 ∪U2). Otherwise, we say that A is
connected.

Proposition 17.1. Let A ⊂ R. The following conditions on A are equivalent:
(a) there exist a1, a2 ∈ A and c /∈ A such that a1 < c < a2;
(b) (inf(A), sup(A)) ⊂ A;
(c) A is an interval;
(d) A is connected.

Proof. Exercise. �

Proposition 17.2. Let f : E → R be a continuous function, and let A ⊂ E be
connected. Then f(A) is connected.

Proof. It suffices to show that if f(A) is disconnected, then A is disconnected. Thus
assume that f(A) is disconnected, and let V1 and V2 be open subsets of R such that
f(A) ∩ V1 6= ∅, f(A) ∩ V2 6= ∅, but f(A) ⊂ (V1 ∪ V2). Let U1 = f−1(V1) and
U2 = f−1(V2). Then A∩U1 6= ∅, A∩U2 6= ∅, but A ⊂ (U1 ∪U2). Moreover, since
f is continuous, U1 and U2 are open. Thus, A is disconnected. �
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3. Compact Sets

Let A ⊂ R. A cover of A is a collection C ⊂ P(R) of subsets of R such that
A ⊂ ∪C.

Let C be a cover of A ⊂ R. We say that C is an open cover if every member
U ∈ C is an open subset of R. We say that C is a finite cover if C is a finite set.

Note that the modifier open refers to the sets inside C, whereas the modifier
finite refers to the collection C itself.

A subcover of C is a subset D ⊂ C such that A ⊂ ∪D.
We say that A is compact if every open cover of A has a finite subcover.

Example 17.3. Let A = Z. Let In = (n− 1
3 , n + 1

3 ). Let C = {In | n ∈ Z}. Then
C is an open cover of Z with no finite subcover. Thus Z is not compact.

Example 17.4. Let A = (0, 1). Let In = (0, 1− 1
n ). Let C = {In | n ∈ Z+}. Then

C is an open cover of (0, 1) with no finite subcover. Thus (0, 1) is not compact.

Proposition 17.5. Let A = {a1, . . . , an} be a finite set. Then A is compact.

Proof. Let C be an open cover of A. Then for each ai ∈ A, there exists and open set
Ui ∈ C such that ai ∈ Ui. Then A ⊂ ∪n

i=1Ui, and {U1, . . . , Un} is a finite subcover
of C. Thus A is compact. �

Proposition 17.6. Let a, b ∈ R with a < b. Then the closed interval [a, b] ⊂ R is
compact.

Proof. Let C be an open cover of [a, b].
Let x ∈ [a, b] and let Ux ∈ C be an open set which contains x. Then there exists

εx > 0 such that (x− εx, x + εx) ⊂ Ux. Let

B = {x ∈ [a, b] | [a, x] can be covered by a finite subcover of C}.
Note that B is nonempty, since the closed interval [a, a + εa

2 ] ⊂ Ua, and {Ua} is a
finite subcover of C, so for example a + εa

2 ∈ B.
Let z = supB; clearly a + εa

2 ≤ z ≤ b. We claim that z ∈ B, and that z = b.
To see this, let ε = min{εz, z − a}. Then z − ε

2 ∈ B. Let D be a finite subcover
of C which covers [a, z − ε

2 ]. Then D ∪ {Uz} covers [a, z], so z ∈ B. Now suppose
that z < b, and set δ = min{ε, z − b}. Then z < z + δ

2 < b, and D ∪ {Uz} covers
[a, z + δ

2 ]; since z + δ
2 ∈ [a, b], this contradicts the definition of z. Thus z = b. This

completes the proof. �
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Proposition 17.7. Let f : E → R be a continuous function, and let A ⊂ E be a
compact set. Then f(A) is compact.

Proof. Let C be an open cover of f(A). Define

B = {f−1(V ) | V ∈ C}.
Since A is compact, there exists a finite subset of B, say U = {U1, . . . , Un}, such
that A ⊂ ∪n

i=1Ui. Each Ui is the preimage of an open subset, say Ui = f−1(Vi).
Then f(Ui) ⊂ Vi, and

f(A) ⊂ f(∪n
i=1Ui) = ∪n

i=1f(Ui) ⊂ ∪n
i=1Vi;

now V = {V1, . . . , Vn} is a finite subcover of C. This shows that f(A) is compact. �

Proposition 17.8. Let A ⊂ R be compact and let F ⊂ A be closed. Then F is
compact.

Proof. Let C be an open cover of F . Let U = R r F ; since F is closed, U is open.
Let B = C ∪ {U}. Now B is an open cover of A. Since A is compact, let U be a
finite subcover of A. Since F ⊂ A, then U is also a finite open cover of F . Let
V = Ur{U}; now V is still a finite open cover of F , and V is a subcover of C. Thus
F is compact. �

Theorem 17.9 (Heine-Borel Theorem). Let A ⊂ R. Then A is compact if and
only if A is closed and bounded.

Proof. We prove both directions.
(⇒) Suppose that A is compact; we wish to show that A is closed and bounded.
Cover A with sets of the form (−n, n), for n ∈ Z+. Since A is compact, there

exists a finite subcover. This subcover contains an interval of maximum length, say
(−M,M), and clearly A ⊂ (−M,M). Thus A ⊂ [−M,M ], and A is bounded.

To show that A is closed, we show that its complement is open. Let B = RrA.
Let b ∈ B. For each point a ∈ A, set εa = |b − a|/2, Ia = (a − ε, a + ε), and
Ja = (b− ε, b+ ε). Let I = {Ia | a ∈ A}. Then I is an open cover of A, and so it has
a finite subcover {Ia1 , . . . , Ian}. The open set ∪n

i=1Iai contains A and is disjoint
from the set ∩n

i=1Jai
, which is also open and contains b. Thus B is open.

(⇐) Suppose that A is closed and bounded; we wish to show that A is compact.
Since A is bounded, there exists M > 0 such that A ⊂ [−M,M ]. The set [−M,M ]
is a closed interval, and so it is compact by Proposition 17.6. Thus A is a closed
subset of a compact set, and therefore is compact by Proposition 17.8. �

Proposition 17.10. Let K be a compact set. Then inf K ∈ K and supK ∈ K.

Proof. Since K is bounded, then supK exists as a real number, say b = supK.
Suppose b /∈ K; then {(−∞, b− 1

n ) | n ∈ Z+} is an open cover of K with no finite
subcover, contradicting that K is compact. Thus b ∈ K. Similarly, inf K ∈ K. �





CHAPTER 18

Lecture 18 - Uniform Continuity

1. Boundary Behavior

Recall that if f : D → R is continuous and x0 ∈ D is an accumulation point
of D, then f has a limit at x0, and indeed limx→x0 f(x) = f(x0). However, if x0 is
not in D, other possibilities exist.

Let D = (−1, 1) and x0 = 1; clearly, x0 is an accumulation point of D. Let
f : D → R be defined by f(x) = 1

1−x2 . Now f is continuous on D and x0 is an
accumulation point of D, but the limit does not exist at x0.

This happens because continuity is a local property, as opposed to a global
property. A local property is one which does not look beyond some neighborhood
of every point, no matter how small that neighborhood may be.

For example, whether or not a set is open is a local property of the set, but
whether or not it is bounded is a global property.

2. Uniform Continuity

Let E ⊂ R and let f : E → R. We say that f is uniformly continuous on E if

∀ε > 0∃δ > 0 3 |x− y| < δ ⇒ |f(x)− f(y)| < ε,

where x, y ∈ E.

Proposition 18.1. Let f : D → R be uniformly continuous and let x0 be an
accumulation point of D. Then f has a limit at x0.

Proof. Recall that f has a limit at x0 if and only if for every sequence {xn}∞n=1 in
D which converges to x0, the sequence {f(xn)}∞n=1 converges.

Let {xn}∞n=1 be a sequence in D which converges to x0; to show that {f(xn)}∞n=1

converges, it suffices to show that it is a Cauchy sequence.
Let ε > 0; we wish to find N ∈ Z+ such that if m,n ≥ N , then |f(xm)−f(xn)| <

ε. Since f is uniformly continuous, there exists δ > 0 such that if |x− y| < δ, then
|f(x)− f(y)| < ε, where x, y ∈ E.

Since limn→∞ xn = x0, there exists N ∈ Z+ such that |xn − x0| < δ
2 whenever

n ≥ N . Then for m,n ≥ N , we have |xm − xn| < δ, so |f(xm)− f(xn)| < ε. Since
ε was selected arbitrarily, this shows that {f(xn)}∞n=1 is a Cauchy sequence, and is
therefore convergent. �
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72 18. LECTURE 18 - UNIFORM CONTINUITY

Proposition 18.2. Let f : E → R be a continuous function. If E is compact, then
f is uniformly continuous.

Proof. Suppose that E is compact.
Let ε > 0; we wish to find δ > 0 such that if x, y ∈ E and |x − y| < δ, then

|f(x)− f(y)| < ε.
Since f is continuous, then for every x ∈ E there exists δx > 0 such that if

y ∈ E and |x− y| < δx, then |f(x)− f(y)| < ε.
Let Vx = (x− δx

2 , x + δx

2 ); this is an open set which contains x. Let C = {Vx |
x ∈ E}; then C is an open cover of E. Since E is compact, there exists a finite
subcover, so there exist x1, . . . , xn ∈ E such that E ⊂ ∪n

i=1Vxn
. Set

δ = min{δxi/2 | i = 1, . . . , n}/2.

Let x, y ∈ E with |x− y| < δ. Now there exists xi such that |x− xi| <
δxi

2 . Then

|y − xi| = |y − x + x− xi|
≤ |y − x|+ |x− xi|

< δ +
δxi

2

≤ δxi

2
+

δxi

2
= δ.

�



CHAPTER 19

Lecture 19 - Intermediate Value Theorem

1. Relatively Open Sets

Let E ⊂ R and let V ⊂ E. We say that E is relatively open in E if there exists
an open set U ⊂ R such that U ∩ E = V . Similarly, a subset G ⊂ E is relatively
closed if E r G is relatively open. This is equivalent to the existence of a closed set
F ⊂ R such that F ∩ E = G.

Proposition 19.1. Let f : E → R be a function. Then f is continuous on E if
and only if for every open set V ⊂ R, the set f−1(V ) is relatively open in E.

2. Homeomorphism

Let A and B be subsets of R. A homeomorphism from A to B is a bijective
continuous function f : A → B such that f−1 is also continuous.

It is natural to suppose that any bijective continuous function is a homeomor-
phism, but this is not the case.

Example 19.2. Let A = (0, 1) ∪ [2, 3) and let B = (0, 2). Define f : A → B by

f(x) =

{
x if x ∈ (0, 1);
x− 1 if x ∈ [2, 3).

This function is clearly bijective and continuous at every point in A; however, its
inverse is discontinuous.

We have seen that the continuous image of a compact set is compact. We will
use this fact in the next proposition.
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74 19. LECTURE 19 - INTERMEDIATE VALUE THEOREM

Proposition 19.3. Let f : A → B be a bijective continuous function. If A is
compact, then f is a homeomorphism.

Lemma 19.4. If F is closed and U is open, then F r U is closed and U r F is
open.

Proof of Lemma. Since F r U = F ∩ (R r U) is the intersection of closed sets, it is
closed. On the other hand, since U r F = U ∩ (R r F ) is the intersection of open
sets, it is open. �

Proof of Proposition. Let g = f−1 so that g : B → A is a bijective function; we
wish to show that g is continuous.

Let ε > 0 and select x0 ∈ B. Since A is compact, it is closed and bounded
Let U = (g(x0) − ε, g(x0) + ε). Then U is open, and K = A r U is also closed
and bounded, and hence compact. Since the continuous image of a compact set is
compact, we see that f(K) is compact, and hence closed. Let V = R r f(K); this
set is open. Note that

g(B ∩ V ) = g(B r f(K))

= g(B) r g(f(K))

= g(B) r K

= A r (A r U)
= U.

Now g(x0) /∈ K, so x0 = f(g(x0)) /∈ f(K), so x0 ∈ V . Therefore there exists
δ > 0 such that (x0 − δ, x0 + δ) ⊂ V . Thus if x ∈ B and |x − x0| < δ, we have
f(x) ∈ U , which says that |f(x)− f(x0)| < ε. �
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3. Connectedness Revisited

Recall the definition of a closed interval:

[a, b] = {x ∈ R | a ≤ x ≤ b}.

Recall the definition of connectedness:
A subset A ⊂ R is disconnected if there exist disjoint open sets U1, U2 ⊂ R with

A∩U1 6= ∅ and A∩U2 6= ∅ such that A ⊂ (U1 ∪U2). Otherwise, we say that A is
connected.

Proposition 19.5. Let f : E → R be a continuous function, If E is connected,
then f(E) is connected.

Proof. It suffices to show that if f(E) is disconnected, then E is disconnected. Thus
assume that f(E) is disconnected, and let V1 and V2 be open subsets of R such that
f(E) ∩ V1 6= ∅, f(E) ∩ V2 6= ∅, but f(E) ⊂ (V1 ∪ V2).

Let E1 = f−1(V1) and E2 = f−1(V2). We wish to find disjoint open sets U1

and U2 such that E1 = E ∩ U1 and E2 = E ∩ U2.
For each y ∈ f(E) there exists εy > 0 such that (y − εy, y + εy) ⊂ Vi, where

y ∈ Vi. Since f is continuous, for each x ∈ E there exists δx > 0 such that
f((x− δx, x + δx)) ⊂ (y − εy, y + εy), where y = f(x).

Set Ui = ∪x∈Ei
(x − δx, x + δx), for i = 1, 2. Then U1 and U2 are open sets.

Also E ∩ U1 6= ∅, E ∩ U2 6= ∅, but E ⊂ (U1 ∪ U2). Thus, E is disconnected. �

Proposition 19.6. Let A ⊂ R. Then A is connected if and only if

a, b ∈ A ⇒ [a, b] ⊂ A.

Proof. We prove both directions.
(⇒) Let a, b ∈ A with a < b and suppose that [a, b] is not contained in A. Then

there exists c ∈ [a, b] such that c /∈ A. Set U1 = (−∞, c) and U2 = (c,∞); then
a ∈ U1, b ∈ U2, and A ⊂ U1 ∪ U2. Thus A is disconnected.

(⇐) Suppose that for every a, b ∈ A with a < b, we have [a, b] ⊂ A. Let U1 and
U2 be open sets with A∩U1 6= ∅, A∩U2 6= ∅, and A ⊂ U1 ∪U2. We wish to show
that U1 ∩ U2 6= ∅.

Let a ∈ U1 and b ∈ U2; without loss of generality, assume that a < b. Let
c = supU1 ∩ [a, b]. Clearly c ∈ [a, b], so either c ∈ U1 or c ∈ U2.

If c ∈ U1, then there exists ε > 0 such that (c − ε, c + ε) ⊂ U1. Thus c +
min{ ε

2 , c+b
2 } is also in U1 and in [a, b], contradicting the definition of c.

Thus c ∈ U2, so there exists ε > 0 such that (c − ε, c + ε) ⊂ U2. But by the
definition of c, there exists d ∈ U1 ∩ [a, b] such that d ∈ (c − ε, c) ⊂ U2. Thus
U1 ∩ U2 6= ∅. �

Proposition 19.7. Let K ⊂ R be a compact set. Then inf K ∈ K and supK ∈ K.

Proof. Exercise. �

Proposition 19.8. A compact connected set is a closed interval.

Proof. Exercise. �
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4. Intermediate Value Theorem

Theorem 19.9. Let f : [a, b] → R be a continuous function with f(a) · f(b) < 0.
Then there exists c ∈ [a, b] such that f(c) = 0.

Proof. Assume that f(a) < 0 < f(b). Since f([a, b]) is connected, [f(a), f(b)] ⊂
f([a, b]). Since 0 ∈ [f(a), f(b)], then 0 ∈ f([a, b]). That is, f(c) = 0 for some
c ∈ f([a, b]). �



CHAPTER 20

Lecture 20 - Differentiation

Let D ⊂ R and f : D → R. Let a ∈ D be an accumulation point of D. Define
a function

f̂a : D r {a} → R by f̂a(x) =
f(x)− f(a)

x− a
.

We say that f is differentiable at a if f̂a has a limit at a. In this case, we write

f ′(a) = lim
x→a

f̂a(x),

and we call f ′(a) the derivative of f at a.

Proposition 20.1. Let D ⊂ R and let a ∈ D be an accumulation point of D. Let
f : D → R. If f is differentiable at a, then f is continuous at a.

Proof. Suppose that f is differentiable at a. Then f̂a has a limit at a. Now for
x ∈ D r {a}, we have

f(x) = f̂a(x)(x− a) + f(a).
The constituent functions of the right hand side have limits; thus the left hand side
has a limit, and

lim
x→a

f(x) = lim
x→a

f̂a(x) lim
x→a

(x− a) + lim
x→a

f(a) = f ′(a) · 0 + f(a) = f(a).

Thus f is continuous at a. �

Proposition 20.2. Let D ⊂ R and let a ∈ D be an accumulation point of D. Let
f : D → R and g : D → R be differentiable at a. Then f + g is differentiable at a,
and (f + g)′(a) = f ′(a) + g′(a).

Proof. Notice that

(f̂ + g)a(x) =
(f + g)(x)− (f + g)(a)

x− a

=
f(x)− f(a)

x− a
+

g(x)− g(a)
x− a

= f̂a(x) + ĝa(x).

Therefore

lim
x→a

(f̂ + g)a(x) = lim
x→a

f̂a(x) + lim
x→a

ĝa(x)

= f ′(a) + g′(a).

�

Proposition 20.3. Let D ⊂ R and let a ∈ D be an accumulation point of D. Let
f : D → R be differentiable at a and let c ∈ R. Then cf is differentiable at a, and
(cf)′(a) = cf ′(a).
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Proposition 20.4. Let D ⊂ R and let a ∈ D be an accumulation point of D. Let
f : D → R and g : D → R be differentiable at a. Then fg is differentiable at a,
and (fg)′(a) = f ′(a)g(a) + f(a)g′(a).

Proposition 20.5. Let D ⊂ R and let a ∈ D be an accumulation point of D.
Let f : D → R and g : D → R be differentiable at a, with g(a) 6= 0. Then f

g is

differentiable at a, and ( f
g )′(a) = f ′(a)g(a)−f(a)g′(a)

g(a)2 .



CHAPTER 21

Lecture 21 - Properties of the Derivative

1. Leibnitz Notation

Let f : D → R with x0 an accumulation point of D.
Let ∆x = x − x0; viewing x0 as fixed, this is implicitly a function of x. Let

∆f = f(x)− f(x0); viewing f as fixed, this is also a function of x.
Now x goes to x0, we see that ∆x goes to 0. Thus

lim
x→0

∆f

∆x
= lim

x→x0

f(x)− f(x0)
x− x0

.

Thus we may define the derivative to be
df

dx
= lim

x→0

∆f

∆x
.

Moreover, in Leibnitz notation, it is traditional to start with a function whose name
is y instead of f , so this becomes

dy

dx
= lim

x→0

∆y

∆x
.
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2. Chain Rule

If we have two lines y = m1z + b1 and z = m2x + b2 and compose them, we
obtain

y = m1m2x + (m1b2 + b1),
a line with slope m1m2. Since we view a differentiable function as a function which
is approximately a line whose slope is the derivative, we guess that the derivative
of a composition is the product of the derivatives.

Suppose that y is a function of u and u is a function of x. Then we may attempt
to right

∆y

∆x
=

∆y

∆u

∆u

∆x
.

Then ∆u → 0 as ∆x → 0, so taking the limit of both sides we would arrive at
dy

dx
=

dy

du

du

dx
.

The problem with this reasoning is that ∆u may be zero even when ∆x is
nonzero. We have to get around this problem.

Proposition 21.1 (Chain Rule). Let X, Y ⊂ R with x0 ∈ D an accumulation point
of X and y0 ∈ Y and accumulation point of Y . Let f : X → R and g : Y → R with
f(X) ⊂ Y and f(x0) = y0. If f is differentiable at x0 and g is differentiable at y0,
then g ◦ f is differentiable at x0 and

(g ◦ f)′(x0) = g′(y0)f ′(x0).

Proof. Define a function U : X → R by U(x) = g(f(x))−g(f(x0))
x−x0

; we wish to show
that U(x) has a limit at x = x0, and that limx→x0 U(x) = g′(y0)f ′(x0).

Define h : Y → R by

h(y) =

{
g(y)−g(y0)

y−y0
if y 6= y0;

g′(y0) if y = y0.

Since g is differentiable at y0, we have limy→y0 h(y) = g′(y0) = h(y0), so h is
continuous at y0. Since f is differentiable at x0, it is continuous at x0, and since
f(x0) = y0, then h ◦ f is continuous at x0.

Set T (x) = f(x)−f(x0)
x−x0

. We claim that for x ∈ D r {x0}, we have U(x) =
h(f(x)) · T (x). If f(x) = f(x0), then g(f(x)) = g(f(x0)) = g(y0). In this case,
U(x) = 0 and h(f(x)) · T (x) = 0. Otherwise, U(x) = g(f(x))−g(f(x0))

f(x)−f(x0)
f(x)−f(x0)

x−x0
=

h(f(x)) · T (x).
Now take the limit to see that

lim
x→x0

U(x) = lim
x→x0

h(f(x)) lim
x→x0

T (x) = g′(y0)f ′(x0).

�
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3. Extrema

Let f : D → R and let x0 ∈ D.
We call x0 a global maximum [respectively global minimum] of f if f(x) ≤ f(x0)

[respectively f(x) ≥ f(x0)] for all x ∈ [a, b]. If x0 is a global minimum or a global
maximum, it is called a global extremum.

Proposition 21.2. Let D ⊂ R and let f : D → R be continuous. If D is compact,
then there exist x1, x2 ∈ D such that x1 is a global minimum of f and x2 is a global
maximum of f .

Proof. Since D is compact and f is continuous, then f(D) is compact. Thus
inf f(D) ∈ f(D) and sup f(D) ∈ f(D). So there exist x1, x2 ∈ D such that
f(x1) = inf f(D) and f(x2) = sup f(D). Then x1 is a global minimum and x2 is a
global maximum. �

We call x0 a local maximum [respectively local minimum] of f if there exists a
neighborhood Q of x0 such that for x ∈ Q ∩D we have f(x) ≤ f(x0) [respectively
f(x) ≥ f(x0)]. If x0 is a local minimum or a local maximum, it is called a local
extremum.

Proposition 21.3. Let f : [a, b] → R and let x0 ∈ [a, b] be a local extremum of f .
If f is differentiable at x0, then f ′(x0) = 0.

Proof. Suppose that x0 is a local maximum. Then there exists δ > 0 such that
f(x) ≤ f(x0) for all x satisfying |x− x0| < δ.

Set T (x) = f(x)−f(x0)
x−x0

for x ∈ D r {x0}. Since f is differentiable at x0,
limn→∞ T (xn) = f ′(x0) for every sequence from (x − δ, x + δ) which converges
to x0.

Note that the numerator of T (x) is negative for x near x0. For xn = x− δ
n , we

see that T (xn) ≥ 0, so f ′(x0) ≥ 0. However, for xn = x + δ
n , we have T (xn) ≤ 0,

so f ′(x0) ≤ 0. This shows that f ′(x0) = 0. �



82 21. LECTURE 21 - PROPERTIES OF THE DERIVATIVE

4. Rolle’s Theorem

Proposition 21.4 (Rolle’s Theorem). Let f : [a, b] → R be continuous on [a, b]
and differentiable on (a, b). Then if f(a) = f(b), there exists c ∈ (a, b) such that
f ′(c) = 0.

Proof. Since [a, b] is compact, there exists x1, x2 ∈ [a, b] such that f(x1) is a global
minimum and f(x2) is a global maximum. If f(x1) = f(x2), then f is constant, and
f ′(x) = 0 for every x ∈ [a, b]. Otherwise, either x1 6= f(a) or x2 6= f(a). Therefore
either x1 ∈ (a, b) or x2 ∈ (a, b). If x1 ∈ (a, b), then x1 is a local minimum, and
f ′(x1) = 0. If x2 ∈ (a, b), then x2 is a local maximum, and f ′(x2) = 0. �

Proposition 21.5 (Mean Value Theorem). Let f : [a, b] → R be continuous on [a, b]
and differentiable on (a, b). Then there exists c ∈ (a, b) such that f ′(c) = f(b)−f(b)

b−a .

Proof. Define g : [a, b] → R by g(x) = f(x)−x−a
b−a (f(b)−f(a)). There g is continuous

on [a, b] and differentiable on (a, b), and we compute that

g′(x) = f ′(x)− f(b)− f(a)
b− a

.

However, g(a) = f(a) and g(b) = f(a). By Rolle’s Theorem, there exists
c ∈ [a, b] such that g′(c) = 0, so f ′(c) = f(b)−f(a)

b−a . �
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5. Inverse Function Theorem

Proposition 21.6. Let f : [a, b] → R be continuous on [a, b] and differentiable
on (a, b). If f ′(x) 6= 0 for x ∈ [a, b], then f is injective, and the inverse of f is
differentiable on f((a, b)), with

(f−1)′(f(x)) =
1

f ′(x)
for every x ∈ (a, b).

Proof. Suppose that f is not injective. Then there exist x1, x2 ∈ [a, b] such that
f(x1) = f(x2). By Rolle’s Theorem, there exists c ∈ [x1, x2] such that f ′(c) = 0;
this violates the hypothesis. Thus f is injective.

We have seen that a continuous bijective function on a compact set has a
continuous inverse; since [a, b] is compact, f−1 : f([a, b]) → [a, b] is continuous.

Now let y0 ∈ f((a, b)), and let {yn}∞n=1 be an arbitrary sequence from f((a, b))r
{y0} which converges to y0. Set x0 = f−1(y0) and xn = f−1(yn). It suffices to
show that limn→∞

f−1(yn)−f−1(y0)
yn−y0

= 1
f ′(x0)

.
Since f−1 is continuous, we see that limn→∞ f−1(yn) = f−1(y0), that is,

limn→∞ xn = x0. Thus, since f is differentiable at x0, we have

lim
n→∞

f(xn)− f(x0)
xn − x0

= f ′(x0).

Since f is injective, f(xn)− f(x0) 6= 0 unless xn = x0, so by a property of limits of
sequences we have

1
f ′(x0)

= lim
n→∞

xn − x0

f(xn)− f(x0)
= lim

n→∞

f−1(yn)− f−1(y0)
yn − y0

.

�





CHAPTER 22

Lecture 22 - Integration

Let a, b ∈ R with a < b. A partition of [a, b] is a finite set {t0, t1, . . . , tn} with
a = t0 < t1 < · · · < tn = b.

Let N(a, b) denote the set of all partitions of [a, b]. Note that this set is partially
ordered by inclusion. If P,Q ∈ N(a, b) and P ⊂ Q, we say that Q is a refinement
of P .

Let f : [a, b] → R be a bounded function and let P = {x0, . . . , xn} be a partition
of [a, b]. Set

Mf (P, i) = sup{f(x) | x ∈ [xi−1, xi]} and mf (P, i) = inf{f(x) | x ∈ [xi−1, xi]}}.
The upper Riemann sum of f with respect P is

Uf (P ) =
n∑

i=1

Mf (P, i)(xi − xi−1),

and the lower Riemann sum of f with respect to P is

Lf (P ) =
n∑

i=1

mf (P, i)(xi − xi−1).

Since f is bounded, there exist m,M ∈ R with m < M such that f(x) ∈ [m,M ]
for every x ∈ [a, b]. Thus

m(b− a) ≤ Lf (P ) ≤ Uf (P ) ≤ M(b− a).

Moreover, if Q is a refinement of P , then

Lf (P ) ≤ Lf (Q) ≤ Uf (Q) ≤ Uf (P ).

The upper Riemann integral of f is∫ b

a

f dx = inf{Uf (P ) | P ∈ N(a, b)},

and the lower Riemann integral of f is∫ b

a

f dx = sup{Lf (P ) | P ∈ N(a, b)}.

Note that the upper and lower Riemann integrals exist for any bounded function;
in fact, if f(x) ∈ [m,M ] for every x ∈ [a, b], then

m(b− a) ≤
∫ b

a

f dx ≤
∫ b

a

f dx ≤ M(b− a).

We say that f is Riemann integrable on [a, b] if
∫ b

a
f dx =

∫ b

a
f dx. The common

value is called the Riemann integral, and is denoted by
∫ b

a
f dx.

85
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The adjective Riemann precedes the word integrable because there are other
sorts of integrals which are of as much or more importance to theoretical mathe-
matics as the Riemann integral. Predominant among these is the Lebesque integral,
which is defined by splitting up the range of the function f instead of its domain.
However, we will not study Lebesque integrable functions, and the modifier Rie-
mann becomes superfluous for us. Thus we will call a Riemann integrable function
simply integrable.

Proposition 22.1. Let f : [a, b] → R be bounded. Then the following conditions
are equivalent:

(a) f is integrable on [a, b];

(b)
∫ b

a
f dx−

∫ b

a
f dx = 0;

(c) inf{Uf (P )− Lf (P ) | P ∈ N(a, b)} = 0;
(d) ∀ε > 0∃P ∈ N(a, b) 3 Uf (P )− Lf (P ) < ε.

Proof. It is obvious that (a) is equivalent to (b). Also, that (c) implies (d) is
clear. That (d) implies (c) follows immediately from the fact that Uf (P ) ≥ Lf (P )
for every P ∈ N(a, b).

Suppose that f is integrable on [a, b], and set I =
∫ b

a
f dx, that is,

sup{Lf (P ) | P ∈ N(a, b)} = I = inf{Uf (P ) | P ∈ N(a, b)}.
Let ε > 0. Then there exist partitions P1 and P2 of [a, b] such that

Uf (P1)−
ε

2
< I < Lf (P2) +

ε

2
.

Let P = P1 ∪ P2; then P is a common refinement of P1 and P2, and

Uf (P )− ε

2
≤ Uf (P1)−

ε

2
< I < Lf (P2) +

ε

2
≤ Lf (P ) +

ε

2
.

This implies that
Uf (P )− Lf (P ) < ε,

which shows that (a) implies (d).
Now suppose that condition (d) holds. Let ε > 0, and let P ∈ N(a, b) such

that Uf (P )−Lf (P ) < ε. Now
∫ b

a
f dx ≤ Uf (P ), and

∫ b

a
f dx ≥ Lf (P ). Subtracting

these inequalities yields

0 ≤
∫ b

a

f dx−
∫ b

a

f dx ≤ Uf (P )− Lf (P ) < ε.

Since ε is arbitrary, this proves (b). �
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Example 22.2. Let f : [0, 1] → R be defined by f(x) = x. Let P = {x0, . . . , xn}
be any partition of [0, 1]. Then

Uf (P ) =
n∑

i=1

xi(xi − xi−1) and Lf (P ) =
n∑

i=1

xi−1(xi − xi−1)

Then

Uf (P )− Lf (P ) =
n∑

i=1

[
xi(xi − xi−1)− xi−1(xi − xi−1)

]
=

n∑
i=1

(xi − xi−1)2.

Let ε > 0 and let n be so large that n > 1
ε . Define a partition P by P = { k

n | k =
0, . . . , n}. Then

Uf (P )− Lf (P ) =
n∑

i=1

1
n2

=
1
n

< ε.

By the previous proposition, f is integrable.

Example 22.3. Let f : [0, 1] → R be defined by

f(x) =

{
1 if x is rational;
0 if x is irrational.

Let P = {x0, . . . , xn} be any partition of [0, 1]. Then for every i, Mf (P, i) = 1

and mf (P, i) = 0, so Uf (P ) = 1 and Lf (P ) = 0. Therefore
∫ 1

0
f dx = 1 and∫ 1

0
f dx = 0, so f is not integrable.
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Example 22.4. Define q : Q → Z+ by

q(x) = min{b ∈ Z+ | x =
a

b
for some a ∈ Z}.

Let f : [0, 1] → R be defined by

f(x) =

{
1

q(x) if x is rational;

0 if x is irrational.

Since every interval contains an irrational number, it is clear that
∫ 1

0
f dx = 0.

Therefore, if f is integrable, we would have
∫ b

a
f dx = 0. We wish to show that

the upper Riemann integral is zero.
Let ε > 0. We construct a partition P of [0, 1] such that Uf (P ) < ε.
There are only finitely many rational numbers t ∈ (0, 1) such that 1

q(t) ≥
ε
2 ; let

{t1, . . . , tm} be the set of such numbers, with ti < ti+1. Set

h = (min{ti+1 − ti} ∪ {
ε

m
, 1− tm})/2.

Then the intervals of the form [ti, ti + h] are disjoint. Set x0 = 0 and x2m+1 = 1,
and for i = 1, . . . ,m, set x2i−1 = ti and x2i = ti + h.

Set n = 2m + 1. Now P = {x0, x1, . . . , xn} is a partition of [0, 1]. For i odd,
then Mf (P, i) < ε

2 . For i even, then (xi − xi−1) ≤ ε
2m . Thus

Uf (P ) =
n∑

i=1

Mf (P, i)(xi − xi−1)

=
∑
odd

Mf (P, i)(xi − xi−1) +
∑
even

Mf (P, i)(xi − xi−1)

<
ε

2

∑
odd

(xi − xi−1) + h
∑
even

Mf (P, i)

<
ε

2
+ hm

≤ ε

2
+

ε

2
= ε.
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Let f : [a, b] → R. We say that f is increasing on [a, b] if for every x1, x2 ∈ [a, b]
with x1 < x2, we have f(x1) < f(x2).

Proposition 22.5. Let f : [a, b] → R be increasing. Then f is integrable on [a, b].

Proof. Since f is increasing, f(x) ∈ [f(a), f(b)] for every x ∈ [a, b]. In particular, f
is bounded. Set B = f(b)− f(a).

Let P = {x0, . . . , xn} be any partition of [a, b]. Since f is increasing, we have
Mf (p, i) = max{f(x) | x ∈ [xi−1, xi]} = f(xi), and mf (P, I) = min{f(x) | x ∈
[xi−1, xi]} = f(xi−1). Then

Uf (P ) =
n∑

i=1

f(xi)(xi − xi−1) and Lf (P ) =
n∑

i=1

f(xi−1)(xi − xi−1),

so Uf (P )− Lf (P ) =
∑n

i=1(f(xi)− f(xi−1))(xi − xi−1).
Let ε > 0, and let k = ε

2B so that 0 < kB < ε. Choose a partition P =
{x0, x1, . . . , xn} such that xi − xi−1 < k. Then

Uf (P )− Lf (P ) ≤
n∑

i=1

(f(xi)− f(xi−1))k

= k
n∑

i=1

(f(xi)− f(xi−1))

= kM < ε.

Thus f is integrable. �

Proposition 22.6. Let f : [a, b] → R be continuous. Then f is integrable on [a, b].

Proof. Let ε > 0; we wish to find a partition P such that Uf (P )− Lf (P ) < ε).
Since f is continuous and [a, b] is compact, the image is also compact, and in

particular, f is bounded on [a, b]. Moreover, f is uniformly continuous on [a, b], so
there exists δ > 0 such that if x, y ∈ [a, b] and |x−y| < δ, then |f(x)−f(y)| < ε

b−a .
Let P = {x0, x1, . . . , xn} be any partition of [a, b] such that |xi − xi−1| < δ.

There exist si, ti ∈ [xi−1, xi] such that f(si) = mf (P, i) and f(ti) = Mf (P, i). Since
|si − ti| < δ, we have |f(ti)− f(si)| < ε/(b− a). Thus

Uf (P )− Lf (P ) =
n∑

i=1

(f(ti)− f(si))(xi − xi−1)

≤
n∑

i=1

ε

b− a
(xi − xi−1)

=
ε

b− a

n∑
i=1

(xi − xi−1)

= ε.

Thus f is integrable. �





CHAPTER 23

Lecture 23 - Integration Properties

Proposition 23.1. Let f, g : [a, b] → R be integrable on [a, b]. Then (f + g) :
[a, b] → R is integrable, and∫ b

a

(f + g) dx =
∫ b

a

f dx +
∫ b

a

g dx.

Proof. Let P = {x0, . . . , xn} be a partition of [a, b]. Then

mf (P, i) + mg(P, i) ≤ mf+g(P, i) ≤ Mf+g(P, i) ≤ Mf (P, i) + Mg(P, i),

for i = 1, . . . , n. Therefore

(1) Lf (P ) + Lg(P ) ≤ Lf+g(P ) ≤ Uf+g(P ) ≤ Uf (P ) + Ug(P ).

Next we would like to say this: since this is true for every partition P , we have∫ b

a

f dx +
∫ b

a

g dx ≤
∫ b

a

(f + g) dx ≤
∫ b

a

(f + g) dx ≤
∫ b

a

f dx +
∫ b

a

g dx.

However, this path is actually more difficult to justify than it first appears. It
is easier to proceed as follows:

Inequality (1) implies that

(Uf (P )− Lf (P )) + (Ug(P )− Lg(P )) ≥ Uf+g(P )− Lf+g(P ) ≥ 0.

Let ε > 0; then there exists a partition P1 such that Uf (P )−Lf (P ) < ε
2 , and there

exists a partition P2 such that Ug(P )− Lg(P ) < ε
2 . Let P = P1 ∪ P2; then

Uf+g(P )− Lf+g(P ) ≤ (Uf (P )− Lf (P )) + (Ug(P )− Lg(P )) <
ε

2
+

ε

2
= ε.

Thus f + g is integrable. Moreover,
∫ b

a
f dx − ε

2 < Lf (P ),
∫ b

a
g dx − ε

2 < Lg(P ),∫ b

a
f dx− ε

2 > Uf (P ), and
∫ b

a
g dx− ε

2 > Ug(P ); therefore∫ b

a

f dx +
∫ b

a

g dx− ε ≤
∫ b

a

(fg) dx ≤
∫ b

a

f dx +
∫ b

a

g dx + ε.

Since this is true for every ε, we must have∫ b

a

(f + g) dx =
∫ b

a

f dx +
∫ b

a

g dx.

�
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Proposition 23.2. Let f : [a, b] → R be integrable and let c ∈ R Then cf : [a, b] →
R is integrable, and ∫ b

a

cf dx = c

∫ b

a

f dx.

Proof. Let P = {x0, . . . , xn} be a partition of [a, b]. Then

cmf (P, i) = mcf (P, i) ≤ Mcf (P, i) = cMf (P, i),

for i = 1, . . . , n. Thus

cLf (P ) = Lcf (P ) ≤ Ucf (P ) = cUf (P ).

Assume c ≥ 0. Then for any bounded set X, we have c supX = sup{cx | x ∈ X}.
This gives

c

∫ b

a

f dx =
∫ b

a

cf dx ≤
∫

cf dx = c

∫
f dx;

since f is integrable, the result follows in this case.
The case of c = −1 follows from the fact that −mf (P, i) = M−f (P, i), which

we leave as an exercise. �

Proposition 23.3. Let f : [a, b] → R, and let c ∈ [a, b]. Then f is integrable on
[a, b] if and only if f is integrable on [a, c] and on [c, b], in which case we have∫ b

a

f dx =
∫ c

a

f dx +
∫ b

c

f dx.

Proof. Suppose that f is integrable on [a, c] and on [c, b], and let ε > 0. Then there
exist partitions P1 of [a, c] and P2 of [c, b] such that

Uf (P1)−
ε

4
<

∫ c

a

f dx < Lf (P1) +
ε

4
,

and

Uf (P2)−
ε

4
<

∫ b

c

f dx < Lf (P2) +
ε

4
.

Let P = P1 ∪ P2; this is a partition of [a, b]. Adding these inequalities yields

Uf (P )− ε

2
<

∫ c

a

f dx +
∫ b

c

f dx < Lf (P ) +
ε

2
.

Therefore Uf (P )−Lf (P ) < ε, so f is integrable on [a, b], and the above inequality
implies that ∫ b

a

f dx− ε

2
<

∫ c

a

f dx +
∫ b

c

f dx <

∫ b

a

f dx +
ε

2
.

Since this is true for every ε, we have∫ b

a

f dx =
∫ c

a

f dx +
∫ b

c

f dx.

Suppose that f is integrable on [a, b], and let ε > 0. Then there exists a
partition P = {x0, . . . , xn} such that Uf (P )−Lf (P ) < ε, and we may assume that
c ∈ P , so that c = xk for some k. Then P1 = {x0, . . . , xk} is a partition of [a, c],
and P2 = {xk, . . . , xn} is a partition of [c, b].
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Clearly Uf (P ) = Uf (P1) + Uf (P2) and Lf (P ) = Lf (P1) + Lf (P2). Then

(Uf (P1)− Lf (P1)) + (Uf (P2)− Lf (P2)) < ε.

Since each summand is positive, each is less than epsilon, which proves the f is
integrable on [a, c] and on [c, b]. �





CHAPTER 24

Lecture 24 - Fundamental Theorem of Calculus

Proposition 24.1. Let f : [a, b] → R be differentiable on [a, b] such that f ′ :
[a, b] → R is integrable on [a, b]. Then∫ b

a

f ′ dx = f(b)− f(a).

Proof. Let P = {x0, . . . , xn} be any partition of [a, b]. By the Mean Value Theorem,
there exists ci ∈ [xi−1, xi] such that f ′(c) = f(xi)−f(xi−1)

xi−xi−1
. Thus,

mf (P, i) ≤ f(xi)− f(xi−1)
xi − xi−1

≤ Mf (P, i),

for i = 1, . . . , n. Therefore,
n∑

i=1

mf (P, i)(xi−xi−1) ≤
n∑

i=1

f(xi)− f(xi−1)
xi − xi−1

(xi−xi−1) ≤
n∑

i=1

Mf (P, i)(xi−xi−1).

Now
n∑

i=1

f(xi)− f(xi−1)
xi − xi−1

(xi − xi−1) =
n∑

i=1

(f(xi)− f(xi−1)) = f(b)− f(a).

Thus
Lf (P ) ≤ f(b)− f(a) ≤ Uf (P ).

Since this is true for every partition,∫ b

a

f ′ dx ≤ f(b)− f(a) ≤
∫ b

a

f ′ dx.

Since f ′ is integrable, the upper sum equals the lower sum, so∫ b

a

f ′ dx = f(b)− f(a).

�
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Proposition 24.2. Let f : [a, b] → R be integrable. If f(x) ≥ 0 for all x ∈ [a, b],
then

∫ b

a
f dx ≥ 0.

Proof. Clearly for any partition P , we have Uf (P ) ≥ 0. Thus taking the infimum
gives

∫
f dx ≥ 0. But f is integrable, so

∫
f dx =

∫
f dx ≥ 0. �

Proposition 24.3. Let f, g : [a, b] → R be integrable. If f(x) ≤ g(x) for every
x ∈ [a, b], then ∫ b

a

f dx ≤
∫ b

a

g dx.

Proof. We see that (g − f)(x) ≥ 0 for every x ∈ [a, b], so∫ b

a

g dx−
∫ b

a

f dx =
∫ b

a

(g − f) dx ≥ 0,

which implies that ∫ b

a

f dx ≤
∫ b

a

g dx.

�

Proposition 24.4. Let f(x) = M be a constant. Then
∫ b

a
f dx = M(b− a).

Proof. Let F (x) = Mx. Then f(x) = F ′(x), and
∫ b

a
f dx = F (b) − F (a) = Mb −

Ma = M(b− a). �

Proposition 24.5. Let f : [a, b] → R be integrable and bounded, so that |f(x)| ≤ M

for some M > 0. Then
∫ b

a
f dx ≤ M(b− a).



24. LECTURE 24 - FUNDAMENTAL THEOREM OF CALCULUS 97

Let D ⊂ R and let f : D → R be any function. Define a function f+ : D → R
by

f+(x) =

{
f(x) if f(x) ≥ 0;
0 otherwise.

Also define f− : D → R by

f−(x) =

{
−f(x) if f(x) ≤ 0;
0 otherwise.

Then we have
(a) f− = (−f)+;
(b) f = f+ − f−;
(c) |f | = f+ + f−.

Proposition 24.6. Let f : [a, b] → R be integrable. Then f+ : [a, b] → R is also
integrable.

Proof. Let ε > 0 and let P = {x0, . . . , xn} be a partition of [a, b] such that Uf (P )−
Lf (P ) < ε. Then for every i we have Mf (P, i) ≥ Mf+(P, i), and mf (P, i) ≤
mf+(P, i); this implies that Mf+(P, i)−mf+(P, i) ≤ Mf (P, i)−mf (P, i). Thus

Uf+(P )− L− f+(P ) =
n∑

i=1

(Mf+(P, i)−mf+(P, i))(xi − xi−1)

≤
n∑

i=1

(Mf (P, i)−mf (P, i))(xi − xi−1)

= Uf (P )− Lf (P )
< ε.

This shows that f+ is integrable. �

Proposition 24.7. Let f : [a, b] → R be integrable. Then |f | is integrable, and
|
∫ b

a
f dx| ≤

∫ b

a
|f | dx.

Proof. We just saw that f+ is integrable. Also −f is integrable, so f− = (f)+ is
integrable. Therefore |f | = f+ + f− is integrable.∣∣∣∣ ∫ b

a

f dx

∣∣∣∣ =
∣∣∣∣ ∫ b

a

f+ dx−
∫ b

a

f− dx

∣∣∣∣ ≤ ∣∣∣∣ ∫ b

a

f+ dx +
∫ b

a

f− dx

∣∣∣∣ =
∫ b

a

|f | dx.

�
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Observation 4. As a convenience, if a > b, then define
∫ b

a
f dx = −

∫ a

b
f dx. Then

it follows from a previous proposition that∫ b

a

f dx−
∫ c

a

f dx =
∫ b

c

f dx.

Observation 5. If c is constant, then c =
R b

a
c dx

b−a .

Proposition 24.8. Let f : [a, b] → R be bounded and integrable. Define

F : [a, b] → R by F (x) =
∫ x

a

f(t) dt.

Then
(a) F is uniformly continuous on [a, b];
(b) if f is continuous at x0, then F is differentiable at x0 and F ′(x0) = f(x0).

Proof. Since f is bounded, there exits M > 0 such that |f(x)| ≤ M for all x ∈ [a, b].
Let ε > 0 and let δ = ε/M . Let x, y ∈ [a, b], and suppose that |x−y| < δ. Then

|F (x)− F (y)| = |
∫ x

a

f(t) dt−
∫ y

a

f(t) dt|

= |
∫ y

x

f(t) dt|

≤ M |x− y|
= ε.

Therefore, F is continuous.
Suppose that f is continuous at x0. Select ε > 0; then there exists δ > 0 such

that if |x − x0| < δ, then |f(x) − f(x0)| < ε
2 . Note that this says that for every

t ∈ [x, x0], we have |f(t)− f(x0)| < ε
2 . Compute∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ =
∣∣∣∣
∫ x

a
f(t) dt−

∫ x0

a
f(t) dt

x− x0
− f(x0)

∣∣∣∣
=

∣∣∣∣
∫ x

x0
f(t) dt

x− x0
−

∫ x

x0
f(x0) dx

x− x0

∣∣∣∣
=

∣∣∣∣
∫ x

x0
(f(t)− f(x0)) dt

x− x0

∣∣∣∣
≤

∣∣∣∣ (ε/2)(x− x0)
x− x0

∣∣∣∣
=

ε

2
< ε.

�



APPENDIX A

Continuity Examples

Example A.1. Let f : R → R be given by f(x) = x2. Let x0 = 2. Show that f is
continuous at x0.

Proof. Let ε > 0; we may assume that ε < 4. Let δ =
√

x2
0 + ε− x0 =

√
4 + ε− 2.

Thus (δ + 2)2 = 4 + ε, so ε = δ2 + 4δ.
Suppose that x ∈ (2− δ, 2 + δ). Then x + 2 < δ + 4, and

|f(x)− f(x0)| = |x2 − 4| = |x− 2|(x + 2) < δ(4 + δ) = ε.

�

Example A.2. Let f : R → R be given by f(x) = x3. Show that f is continuous.

Proof. Let x0 ∈ R and let ε > 0. We wish to find δ > 0 such that if |x − x0| < δ,
then |f(x)− f(x0)| < ε.

For simplicity, assume that x0 > 0. Let δ = 3
√

x3
0 + ε− x0. Solving for ε yields

ε = (x0 + δ)3 − x3
0.

Let x ∈ (x0 − δ, x0 + δ). Then x > 0, and

|f(x)− f(x0)| = |x3 − x3
0|

= |x− x0|(x2 + x0x + x2
0)

< δ((x0 + δ)2 + x0(x0 + δ) + x2
0)

= δ(x2
0 + 2x0δ + δ2 + x2

0 + x0δ + x2
0)

= δ(3x2
0 + 3x0δ + δ2)

= ε.

�
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Example A.3. Let f : [0,∞) → R be given by f(x) =
√

x. Show that f is
continuous.

Motivation. Graph the curve f(x) =
√

x. Select arbitrary x0 ∈ dom(f). Project
up and to the right to find the point

√
x0 on the y-axis. Draw an ε-band around

this point. Project the intersection of this band with the graph of f onto the x-axis.
Notice that the point on the left of this projection is closer to x0 than is the point
on the right. Let δ be one half of the distance between x0 and the left endpoint of
the inverse image of [f(x0)− ε, f(x0) + ε]. �

Proof. Let x0 ∈ [0,∞) and let ε > 0; wlog assume that ε2 ≤ x0. If x0 = 0, let
δ = ε2; clearly this will work. Otherwise set

δ =
1
2
(x0 − (

√
x0 − ε)2);

this is positive. Note that for x ∈ R, |x − x0| = |
√

x − √x0|(
√

x +
√

x0). Then if
|x− x0| < δ, we have

|
√

x−
√

x0| <
δ√

x +
√

x0

=
x0 − (x0 − 2

√
x0ε + ε2)

2(
√

x +
√

x0)

=
ε(2
√

x0 − ε)
2(
√

x +
√

x0)

< ε
(2
√

x0 − ε)
2
√

x0

= ε

(
1− ε

2
√

x0

)
< ε.

�
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Example A.4. Show that every polynomial function is continuous.

Proof. This is tedious but obviously important. We build it gradually.
Claim 1: The constant function f(x) = C, where C ∈ R, is continuous.

Let x0 ∈ R and let ε > 0. Set δ = 1. Then if |x−x0| < δ, we have |f(x)− f(x0)| =
0 < ε. Thus f is continuous in this case.

Claim 2: The identity function f(x) = x is continuous.
Let x0 ∈ R and let ε > 0. Set δ = ε. Then if |x− x0| < δ, we have |f(x)− f(x0)| =
|x− x0| < δ = ε, so f is continuous in this case.

Claim 3: The function f(x) = xn is continuous.
By induction on n. For n = 1, the function g(x) = x is the identity function, and so
it is continuous. By induction, h(x) = xn−1 is continuous. Then by the Continuous
Arithmetic Proposition, f = gh is continuous in this case.

Claim 4: The monomial function f(x) = anxn is continuous, where an ∈ R is
constant.
By Claim 1, g(x) = an is continuous, and by Claim 3, h(x) = xn is continuous, so
there product f = gh is continuous.

Claim 5: The polynomial function f(x) = a0 +a1x+ · · ·+anxn is continuous.
By induction on n, the degree of the polynomial.

For n = 0, f(x) is constant and therefore continuous.
Assume that g(x) = a0 + · · · + an−1x

n−1 is continuous. By Claim 4, h(x) =
anxn is continuous. Then f = g + h is continuous by the Continuous Arithmetic
Proposition. �

Example A.5. Show that every rational function is continuous.

Proof. Let f be a rational function. Then f(x) = p(x)/q(x), where p and q are
polynomial functions. Since p and q are continuous, then f is continuous on its
domain by a Proposition from the arithmetic of continuous functions. �
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Example A.6. Let f : R → R be given by

f(x) =

{
1 if x is rational
0 if x is irrational

Show that f is discontinuous at every real number.

Proof. Let x0 ∈ R. To show that f is discontinuous at x0, it suffices to find ε > 0
such that for every δ > 0, there exists x ∈ (x0 − δ, x0 + δ) with |f(x)− f(x0)| ≥ ε.

Let ε = 1
2 and let δ > 0. Then there exists both a rational and an irrational

in (x0 − δ, x0 + δ). If x0 is rational, let x1 be an irrational in this interval, and we
have |f(x1)− f(x0)| = 1 > ε; if x0 is irrational, let x2 be a rational in this interval,
and we still have |f(x2)− f(x0)| = 1 > ε. Thus f is not continuous at x0. �

Example A.7. Let f : R → R be given by

f(x) =

{
x if x is rational
0 if x is irrational

Show that f is continuous at x = 0 and discontinuous at all nonzero real numbers.

Proof. Let x0 ∈ R r {0}; we show that f is discontinuous at x0. Let ε = |x0|
2 and

let δ > 0. Then there exists both a rational and an irrational in (x0 − δ, x0 + δ). If
x0 is rational, let x1 be an irrational in this interval, and we have |f(x1)− f(x0)| =
|x0| > ε. If x0 is irrational, let x2 be a rational in this interval such that |x2| > |x0|
and we still have |f(x2)− f(x0)| = |x2| > |x0| > ε. Thus f is not continuous at x0.

Now we consider the behavior of f at zero. Let ε > 0 and let δ = ε. Then if
|x−0| < δ, we have |f(x)− f(0)| = 0 if x is irrational and |f(x)− f(0)| = |x| if x is
rational; in either case, |f(x)− f(0)| ≤ |x| < δ = ε, so f is continuous at zero. �
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Example A.8. If r ∈ Q, there exists p ∈ Z and q ∈ N such that r = p
q . Define

q : Q → R by
q(r) = min{q ∈ N | r =

p

q
for some p ∈ Z}.

Define f : R → R by

f(x) =

{
0 if x is irrational

1
q(x) if x is rational

Show that f is discontinuous at every rational and continuous at every irrational.

Proof. Suppose that x0 is rational. We wish to show that f is not continuous at x0.
It suffices to find ε > 0 such that for every δ > 0 there exists x1 ∈ (x0 − δ, x0 + δ)
with |x0 − x1| > ε.

Since x0 is rational, we have x0 = p
q(x0)

for some p ∈ Z. Let ε = 1
2q(x0)

and let
δ > 0. Then (x0−δ, x0+δ) contains an irrational number, say x1; then |x0−x1| < δ
but |f(x0)− f(x1)| = 1

q(r) > ε. Thus f cannot be continuous at x0.
Suppose that x0 is irrational. Let ε > 0. It suffices to find δ > 0 such that

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε.
Let N ∈ N be so large that 1

N < ε. Let a be the greatest integer which is less
than x0 and b be the least integer which is greater than x0; then b = a + 1 and
x0 ∈ [a, b].

For q ∈ Q, there exist only finitely many points in the set [a, b] ∩ {k
q | k ∈ Z}

(in fact, this set contains no more than q points). Thus the set

D = [a, b] ∩ {k

q
| k ∈ Z, q ≤ N}

is finite (there are no more than N(N+1)
2 points in this set). Let

δ = min{|x0 − d| | d ∈ D};
since this set is a finite set of positive real numbers, the minimum exists as a
positive real number. Then (x0 − δ, x0 + δ) ⊂ [a, b]. Let x ∈ (x0 − δ, x0 + δ).
If x is irrational, we have |f(x) − f(x0)| = 0 < ε, and if x is rational, we have
|f(x)− f(x0)| = 1

q(x) < 1
N < ε. Thus f is continuous at x0. �





APPENDIX B

Problem Sets

1. Problem Set A

Problem B.1. Let A, B, and C sets. Show that (A∩B)∪C = (A∪C)∩ (B ∪C).

Problem B.2. Let f : X → Y be a function.
(a) Show that f is surjective if and only if there exists g : Y → X such that
f ◦ g = idY .
(b) Show that f is injective if and only if there exists g : Y → X such that
g ◦ f = idX .

Problem B.3. Let X be a set and let T = {0, 1}. Show that there is a natural
bijective correspondence between the sets P(X) and F(X, T ).

Problem B.4. Let X be a set and let C = {C1, . . . , Cm} and D = {D1, . . . , Dn}
be partitions of X. Define

E = {Ci ∩Dj | Ci ∈ C, Dj ∈ D}.
(a) Show that E is a partition of X.
(b) Describe the equivalence relation induced by E in terms of the equivalence
relations induced by C and D.

Problem B.5. Show that 1 + 3 + 5 + · · ·+ (2n− 1) = n2 for all n ∈ N.

Problem B.6. The following statements are true for all n ∈ N, as can be proved
by induction:

•
∑n

i=1(2i− 1) = n2;
•

∑n
i=1(4i− 3) = 2n2 − n;

•
∑n

i=1(6i− 5) = 3n2 − 2n.
(a) State a conjectured generalization of this pattern.
(b) Prove your conjecture.

Problem B.7. Let b = [3 +
√

2]
2
3 . Show that b /∈ Q.

105
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2. Problem Set B

Refer to the following properties of the real numbers:

(F1) (a + b) + c = a + (b + c);
(F2) a + 0 = a;
(F3) a + (−a) = 0;
(F4) a + b = b + a;
(F5) (ab)c = a(bc);
(F6) a · 1 = a;
(F7) a · a−1 = 1 for a 6= 0;
(F8) ab = ba;
(F9) (a + b)c = ac + bc;
(O1) a ≤ a;
(O2) a ≤ b and b ≤ a implies a = b;
(O3) a ≤ b and b ≤ c implies a ≤ c;
(O4) a ≤ b or b ≤ a;
(O5) a ≤ b implies a + c ≤ b + c;
(O6) a ≤ b implies ac ≤ bc for c ≥ 0.
(C0) every set of real numbers which is bounded above has a supremum.

Problem B.8. Let a, b ∈ R. Show that a2 ≤ b2 ⇔ |a| ≤ |b|.

Problem B.9. Let a, b ∈ R. Show that ||a| − |b|| ≤ |a− b|.

Problem B.10. Let S and T be sets of positive real numbers which are bounded
above. Suppose that S ∩ T 6= ∅. Show that inf S ≤ supT .

Problem B.11. Let S be a bounded set of positive real numbers, and let

T = {t ∈ R | t = s2 for some s ∈ S}.

Show that T is bounded above, and that supT = (sup S)2.

Problem B.12. Let {an}∞n=1 be a convergent sequence of real numbers, and let
A = {an | n ∈ Z+}. Show that limn→∞ an ≤ supA.

3. Problem Set C

Let {sn}∞n=1 be a sequence of real numbers and let s, c, q ∈ R.
We say that s is a limit point of {sn}∞n=1 if

∀ε > 0 ∃N ∈ Z+ 3 n ≥ N ⇒ |sn − s| < ε.

In this case, we say that {sn}∞n=1 converges to s.
We say that c is a cluster point of {sn}∞n=1 if

∀ε > 0 ∀N ∈ Z+ ∃n ≥ N 3 |sn − c| < ε.

In this case, we say that {sn}∞n=1 clusters at c.

Problem B.13. Show that {sn}∞n=1 converges, and find the limit.

(a) sn = 2n

n! .
(b) sn =

∑n
i=1

1
3i .
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Problem B.14. Let {sn}∞n=1 be a sequence which converges to s. Set

tn =
∑n

i=1 sn

n
.

Show that {tn}∞n=1 converges to s.

Problem B.15. Let s1 = 1 and set sn+1 =
√

2sn.
(a) Show that {sn}∞n=1 is bounded.
(b) Show that {sn}∞n=1 is monotone.
(c) Find limn→∞ sn.

Problem B.16. Let sn =
∑n

i=1
1
i! . Show that {sn}∞n=1 is a Cauchy sequence.

(Hint: first show that
∑n

i=m+1
1
i! < 1

m! whenever m < n. Proceed by induction on
the difference k = n−m, which is the number of terms being added.)

Problem B.17. Let {sn}∞n=1 be a bounded sequence of real numbers. Let a =
lim inf sn and b = lim sup sn. Show that for every ε > 0 there exists N ∈ Z+ such
that if n ≥ N , then sn ∈ (a− ε, b + ε).

Problem B.18. Define a sequence {un}∞n=1 by un = 2k if 2k ≤ n < 2k+1. Define
a sequence {tn}∞n=1 by tn = n − un. Define a sequence {sn}∞n=1 by sn = sin 2πtn

un
.

Find the set of cluster points of {sn}∞n=1. Justify your answer.

4. Problem Set D

Problem B.19 (Exercise 3.19). Let f, g : D → R be uniformly continuous. Show
that the function f + g : D → R is uniformly continuous. What can be said about
the function fg : D → R? Justify.

Problem B.20 (Exercise 3.20). Let f : A → B and g : B → C be uniformly
continuous. What can be said about the function g ◦ f : A → C? Justify.

Problem B.21 (Exercise 3.23). A function f : R → R is periodic if there exists
h ∈ R with h > 0 such that f(x + h) = f(x) for all x ∈ R. Show that if f : R → R
is periodic and continuous, then it is uniformly continuous.

Problem B.22 (Exercise 3.31). Suppose f : [a, b] → R and g : [a, b] → R are
continuous. Let T = {x ∈ [a, b] | f(x) = g(x)}. Show that T is closed.

Problem B.23 (Exercise 3.44). Suppose that f : [a, b] → [a, b] is continuous. Show
that f has a fixed point, that is, there exists x ∈ [a, b] such that f(x) = x.

5. Problem Set E

Problem B.24 (Exercise 4.25). Let f : (a, b) → R be differentiable on (a, b).
Suppose that there exists M > 0 such that for every x ∈ (a, b), we have |f ′(x)| ≤ M .

(a) Show that if x, y ∈ (a, b), then | f(x)−f(y)
x−y | ≤ M .

(b) Show that f is uniformly continuous on (a, b).

Hints.
(a) use MVT.
(b) Start like this:
Let ε > 0. Set δ = (an appropriate quantity). We show that if x, y ∈ (a, b) and
|x− y| < δ, then |f(x)− f(y)| < ε. �
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Problem B.25 (Exercise 4.35). Let f(x) = x3 + 2x2 − x + 1. Find an equation
for the line tangent to the graph of f−1 at the point (3, 1).

Observation 6 (Alternate Definition). Let f : R → R and let x0 ∈ R. Define

Q : R r {0} → R by Q(h) =
f(x0 + h)− f(x0)

h
.

Then f is differentiable at x0 if and only if limh→0 Q(h) exists, in which case
f ′(x0) = limh→0 Q(h).

Problem B.26 (Exercise 4.39). Let f : R → R be a function satisfying
(1) f(0) = 1;
(2) f is differentiable at 0 and f ′(0) = 1;
(3) f(x + y) = f(x)f(y).

Show that f is differentiable on R and that f ′(x) = f(x) for every x ∈ R.

Hint. Use the preceding alternate definition of differentiable. �

Definition B.1. A function f : [−b, b] → R is called odd if f(x) = −f(x) for every
x ∈ [−b, b].

Problem B.27 (Exercise 5.14). Let f : [−b, b] → R be an odd function which is
integrable on [−b, b]. Show that

∫ b

−b
f dx = 0.

Problem B.28 (Exercise 5.27). Let f, g : [a, b] → R be integrable on [a, b]. Define
h : [a, b] → R by h(x) = max{f(x), g(x)}. Show that h is integrable on [a, b].
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